Cubical simplicial volume*

CLARA LÖH AND CHRISTIAN PLANKL

ABSTRACT. Cubical simplicial volume is a variation on simplicial volume, based on cubes instead of simplices. Both invariants are homotopy invariants of oriented closed connected manifolds. In this note, we prove that cubical simplicial volume of oriented closed connected surfaces is proportional to ordinary simplicial volume. More precisely, the cubical simplicial volume of an oriented closed connected surface of genus \(g > 0 \) is equal to \(2g - 2 \).

55N10, 57N65

1. INTRODUCTION

Simplicial volume is a homotopy invariant of manifolds measuring the minimal complexity of singular fundamental cycles with \(\mathbb{R} \)-coefficients [3, 9, 6]. Similarly, cubical singular chains lead to cubical simplicial volume (see Section 2 for the definitions).

In this note, we prove that cubical simplicial volume of oriented closed connected surfaces is proportional to ordinary simplicial volume:

Theorem 1.1. Let \(S \) be an oriented closed connected surface of genus \(g > 0 \). Then

\[
\|S\|\square = 2g - 2 = \frac{1}{2} \cdot \|S\|\triangle.
\]

As in the case of simplicial volume [3, 1] the estimate \(\|S\|\square \leq 2g - 2 \) can be obtained from a corresponding estimate for integral cubical simplicial volume and passage to finite coverings (Section 4).

Theorem 1.2. Let \(S \) be an oriented closed connected surface of genus \(g > 0 \). Then

\[
\|S\|\square \leq 2g - 1 = \frac{1}{2} \cdot \|S\|\triangle\mathbb{Z}.
\]

Conversely, subdividing singular squares into two singular simplices shows that \(\|S\|\square \geq 1/2 \cdot \|S\|\triangle = 1/2 \cdot (4g - 4) \) (Section 3). Putting both estimates together proves Theorem 1.1.

Using the classification of 3-manifolds, one can show that also in dimension 3 simplicial volume and cubical simplicial volume are proportional [7]. In higher dimensions, the question whether cubical and ordinary simplicial volume are proportional is an open problem [4, 5.40].

This work was supported by the CRC 1085 Higher Invariants (Universität Regensburg, funded by the DFG) and is based on the Bachelor thesis project of the second author.

*Atlas page: www.map.mpim-bonn.mpg.de/Cubical_simplicial_volume_of_surfaces

Keywords: Simplicial volume, cubical singular homology

Accepted: March 31st 2016
2. Cubical simplicial volume

We briefly review the definition of simplicial volume and cubical simplicial volume and introduce some notation.

2.1. Simplicial volume. We denote the singular chain complex and the singular homology groups by C^\triangle_* and H^\triangle_*, respectively. For $R \in \{\mathbb{Z}, \mathbb{R}\}$ we write $|\cdot|_{1,R}^\triangle$ for the ℓ^1-“norm” on $C^\triangle_* (\cdot; R)$ associated with the R-basis $S_*(\cdot)$ of singular simplices; notice that in the case $R = \mathbb{Z}$ we only have homogeneity with respect to positive integers. Moreover, if X is a topological space, we write $\|\cdot\|_{1,R}^\triangle : H^\triangle_* (X; R) \to \mathbb{R}_{\geq 0}$ for the induced semi-“norm”; in the case $R = \mathbb{Z}$, this semi-norm in general will not be homogeneous. If M is an oriented closed connected manifold and if R is a ring with unit, we denote the corresponding fundamental class by $[M]_R^\triangle \in H^\triangle_* (M; R)$.

Definition 2.1. Let M be an oriented closed connected manifold. Then the simplicial volume and integral simplicial volume of M are defined by

$$
\|M\|_{1,R}^\triangle := \| [M]_{1,R}^\triangle \|
$$

$$
\|M\|_{Z}^\triangle := \| [M]_{Z}^\triangle \|
$$

Example 2.2. The existence of self-maps of non-zero degree implies that $\| S^n \|_{1}^\triangle = 0$ for all $n \in \mathbb{N}_{> 0}$ and that $\| S^1 \times S^1 \|_{Z}^\triangle = 0$ [3][6, Corollary 2.2].

Moreover, $\| S^2 \|_{Z}^\triangle = 2$: Because Δ^2 has an odd number of faces, no singular 2-cycle can consist of a single singular simplex; on the other hand, one can easily construct fundamental cycles of S^2 that consist of two singular simplices (with opposite signs).

It is easy to see that simplicial volume and integral simplicial volume are homotopy invariants of oriented closed connected manifolds. On the other hand, in the presence of negative curvature, simplicial volume is related to the Riemannian volume, which leads to geometric applications of simplicial volume [3, 11, 6].

2.2. Cubical simplicial volume. We quickly recall the definition of cubical singular homology [8, 2]: Replacing standard simplices with standard cubes leads to cubical singular homology: For $n \in \mathbb{N}$ let $\Box^n := [0, 1]^n$ denote the standard n-cube. If X is a topological space, then continuous maps of type $\Box^n \to X$ are called singular n-cubes of X. The geometric/combinatorial boundary of \Box^n consists of 2^n cubical faces. If R is a ring with unit, then a suitable alternating sum of these faces allows to define a chain complex $Q_* (X; R)$ of cubical singular chains with R-coefficients (Figure 1). A singular cube is called degenerate if it factors over one of the coordinate projections. Dividing out the subcomplex $D_* (X; R)$ generated by degenerate singular cubes leads to the cubical chain complex $C_* (X; R) := Q_* (X; R) / D_* (X; R)$.
and hence to cubical singular homology $H_n^\square(X; R)$ (which admits a natural extension to a functor). Notice that dividing out degenerate singular cubes is necessary in order for cubical singular homology of a point to be concentrated in degree 0.

For $R \in \{\mathbb{Z}, \mathbb{R}\}$ we write $|\cdot|_R$ for the ℓ^1-“norm” on $Q_*(\cdot; R)$ associated with the R-basis of cubical singular simplices. If X is a topological space, we define the cubical ℓ^1-semi-norm

$$\|\cdot\|_1, R : H^\square_n(X; R) \to R_{\geq 0}$$

$$\alpha \mapsto \inf \{|c|_1, R | c \in Q_*(X; R) \text{ is a cycle with } [p_{X, R}(c)] = \alpha \in H_n^\square(X; R)|,$$

where $p_{X, R} : Q_*(X; R) \to C_*(X; R)$ is the canonical projection. I.e., we only look at strict cubical cycles that represent the given class.

On the other hand, we can also consider the ℓ^1-“norm” $|\cdot|_1, R$ on $C_*(X; R)$ associated with the R-basis of non-degenerate cubical singular simplices. If X is a topological space, we then write

$$\|\cdot\|_1, R : H^\square_n(X; R) \to R_{\geq 0}$$

$$\alpha \mapsto \inf \{|c|_1, R | c \in C_*(X; R) \text{ is a cycle representing } \alpha \}$$

for the induced semi-“norm”.

Proposition 2.3 (strict vs. degenerate cubical ℓ^1-semi-norm). Let X be a topological space and let $\alpha \in H_n^\square(X; \mathbb{R})$. Then

$$\|\alpha\|_1, R = \|\alpha\|_1, R.$$

Proof. By definition, $\|\cdot\|_1, R \leq \|\cdot\|_1, R$. For the converse estimate we look at the following symmetrisation: For $n \in \mathbb{N}$ let Σ_n^{\square} be the isometry group of the Euclidean n-cube \square^n and let

$\Sigma_{X, n} : Q_n(X; \mathbb{R}) \to Q_n(X; \mathbb{R})$

$$\text{map}(\square^n, X) \ni c \mapsto \frac{1}{|\Sigma_n^{\square}|} \cdot \sum_{\pi \in \Sigma_n^{\square}} (-1)^{\text{sgn } \pi} \cdot c \circ \pi;$$

Figure 1. The boundary of the 2-cube consists of four 1-cubes (with the indicated parametrisations and signs)
here, sgn encodes the orientation behaviour, i.e.,

\[
\text{sgn}: \Sigma_n^\square \rightarrow \{0, 1\}
\]

\[
\pi \mapsto \begin{cases}
0 & \text{if } \pi \text{ is orientation preserving} \\
1 & \text{if } \pi \text{ is orientation reversing.}
\end{cases}
\]

A straightforward calculation shows that \(\Sigma_X: Q_*(X; \mathbb{R}) \rightarrow Q_*(X; \mathbb{R})\) is a chain map. By construction, \(\|\Sigma_X\| \leq 1\) with respect to \(\cdot\|\cdot\|_1^{\square, \mathbb{R}}\). Furthermore, a reflection argument shows that \(\Sigma_X\) maps degenerate singular cubes to 0. Hence, \(\Sigma_X\) factors over \(C_*(X; \mathbb{R})\) and composition with the projection \(p_X: Q_*(X; \mathbb{R}) \rightarrow C^\square_*(X; \mathbb{R})\) yields a chain map

\[
\overline{\Sigma}_X: C^\square_*(X; \mathbb{R}) \rightarrow Q_*(X; \mathbb{R}) \rightarrow C^\square_*(X; \mathbb{R}).
\]

Clearly, \(\|\Sigma_X\| \leq 1\) with respect to \(\cdot\|\cdot\|_{1, \mathbb{R}}\). Moreover, it is not hard to see that \(H_*(\Sigma_X) = \text{id}_{H^\square_*(X; \mathbb{R})}\). Therefore, \(\|\cdot\|_{1, \mathbb{R}} \leq \|\cdot\|_{1, \mathbb{R}}\).

It is well known that there is a canonical natural (both in spaces and coefficients) isomorphism \(H^\square_* \rightarrow H^\Delta_* [2, \text{Theorem V}]\). However, in general this isomorphism is not isometric with respect to the corresponding \(\ell^1\)-semi-norms.

If \(M\) is an oriented closed connected manifold and if \(R\) is a ring with unit, we denote the corresponding fundamental class in cubical singular homology by \([M]^\square_R \in H^\square_*(M; R)\).

Definition 2.4. Let \(M\) be an oriented closed connected manifold. Then the cubical simplicial volume and integral cubical simplicial volume of \(M\) are defined by

\[
\|M\|^{\square} := \| [M]^\square_R \|_{1, \mathbb{R}} \quad \|M\|^{\square}_Z := \| [M]^\square_Z \|_{1, \mathbb{Z}}.
\]

In view of Proposition 2.3 we have \(\|M\|^{\square} = \| [M]^\square_R \|_{1, \mathbb{R}}\) for all oriented closed connected manifolds \(M\). It is not clear whether the same also holds with integral coefficients.

Example 2.5. Again, self-maps show that \(\|S^n\|^{\square} = 0\) for all \(n \in \mathbb{N}_{>0}\) and that \(\|S^1 \times S^1\|^{\square} = 0\).

Wrapping a square around \(S^2\) and mapping the whole boundary of \(\square^2\) to a single point shows that \(\|S^2\|^{\square}_Z = 1\).

3. **Estimating Cubical Simplicial Volume of Surfaces from Below**

We will now provide the estimate for cubical simplicial volume of surfaces from below in terms of ordinary simplicial volume. To this end, we subdivide singular squares into two singular simplices:
Figure 2. Subdividing a square into two triangles

Lemma 3.1 (subdivision of squares).

(1) Let X be a topological space and let R be a ring with unit. Then the natural map

$$\varphi_{X,R} : Q_2(X; R) \to C_2^\Delta(X; R)$$

induces a well-defined natural map

$$\Phi_{X,R} : H_2(Q_*(X; R)) \to H_2^\Delta(X; R)$$

$$[c] \mapsto [\varphi_X(c)].$$

Here, $i_1 \cdot \Delta^2 \to \square^2$ and $i_2 \cdot \Delta^2 \to \square^2$ denote the affine inclusion of the "lower" and "upper" triangle into the square as indicated in Figure 2.

(2) In particular, we obtain a well-defined natural map

$$\overline{\Phi}_{X,R} := \Phi_{X,R} \circ H_2(\Sigma X) : H_2^\square(X; R) \to H_2^\Delta(X; R)$$

(3) If S is an oriented closed connected surface, then $\overline{\Phi}_{S,R}$ maps fundamental classes to fundamental classes, i.e., $\overline{\Phi}_{S,R}([S]^\square_R) = \pm [S]^\Delta_R$.

Proof. A straightforward calculation shows that $\varphi_{X,R}$ maps strict cubical cycles to ordinary singular cycles. Moreover, a suitable subdivision and orientation of cubes into two prisms and hence six tetrahedra witnesses that $\varphi_{X,R}$ maps boundaries to boundaries. This shows the first part.

The second part follows directly from the first part.

The third part follows by considering the local case of $(\mathbb{R}^2, \mathbb{R}^2 \setminus \{0\})$, for which the corresponding statement is easily seen to be true. \hfill \Box

Proposition 3.2 (estimate from below). Let S be an oriented closed connected surface of genus $g > 0$. Then

$$\|S\|^\square \geq \frac{1}{2} \cdot \|S\|^\Delta = 2 \cdot g - 2.$$

Proof. Clearly, we have $\|\varphi_{S,R}(c)\|^\Delta_{1,R} \leq 2 \cdot \|c\|^\square_{1,R}$ for all chains c in $Q_2(S; R)$. Therefore, Proposition 2.3, Lemma 3.1, and $\|\Sigma S\| \leq 1$ imply

$$\|S\|^\square = \|[S]^\square_R\|_{1,R} \geq \frac{1}{2} \cdot \|S\|^\Delta.$$

Moreover, it is well known that $\|S\|^\Delta = 4 \cdot g - 4$ holds [3, 1]. \hfill \Box
4. ESTIMATING CUBICAL SIMPLICIAL VOLUME OF SURFACES FROM ABOVE

4.1. Integral cubical simplicial volume of surfaces. The core of the proof of Theorem 1.2 is constructing explicit integral cubical fundamental cycles of surfaces:

Proof of Theorem 1.2. By the classification of surfaces, we can view an oriented closed connected surface S of genus $g > 0$ as a quotient of the regular $4 \cdot g$-gon X_g, where the edges $a_1, b_1, \alpha_1, \beta_1, \ldots, a_g, b_g, \alpha_g, \beta_g$ are oriented as in Figure 3 and each latin edge is glued to the corresponding greek edge. Moreover, we enumerate the vertices of X_g as indicated in Figure 3 from 1 to $4 \cdot g$. We introduce the following diagonals: For $j \in \{1, \ldots, g\}$ let c_j be the diagonal from vertex $4 \cdot j$ to vertex 1; for $j \in \{2, \ldots, g\}$ let d_j be the diagonal from vertex 1 to vertex $4 \cdot j - 2$. Notice that $c_g = a_1$.

For a label a of directed edges/diagonals in X_g as above, we define the singular 1-cube $\square_a: \square^1 \rightarrow X_g$ as the linear parametrisation of the directed segment corresponding to a. For labels a, b, c, d of directed edges/diagonals in X_g that form a quadrilateral in X_g oriented as in Figure 4, we define the singular 2-cube

$$\square_{a,b,c,d}: \square^2 \rightarrow X_g$$

as a parametrisation of the convex quadrilateral given by a, b, c, d that induces on the boundary the linear parametrisation on the faces a, b, c, d, i.e., such that

$$\partial \square_{a,b,c,d} = \square_a + \square_b - \square_c - \square_d$$

holds.

We then consider the cubical 2-chain

$$\square_{c_1,b_1,\alpha_1,\beta_1} + \sum_{j=2}^{g} (\square_{a_j,b_j,d_j,c_{j-1}} + \square_{c_j,d_j,\alpha_j,\beta_j}) \in \mathbb{Q}_2(X_g;\mathbb{Z})$$

and the corresponding induced cubical 2-chain s_g on S. A straightforward calculation shows that s_g indeed is a cycle in $\mathbb{Q}_*(S;\mathbb{Z})$ (the singular 1-cubes on the quotient S induced from a latin letter and the corresponding greek letter coincide because of the gluing).
Looking at the induced class in $H_2(S, S \setminus \{x\}; \mathbb{Z})$ for some point $x \in S$ that does not lie on any face of a cube in s_g shows that $[p_{S,Z}(s_g)] = \pm [S]_Z^\square \in H_2^\square(S; \mathbb{Z})$.

Hence,

$$\|S\|_Z^{\square} \leq |s_g|_1^{\square} = 2 \cdot g - 1.$$

It remains to show that $\|S\|^\triangle_Z = 4 \cdot g - 2$: By a similar construction as above, it is well known that $\|S\|^\triangle_Z \leq 4 \cdot g - 2$ holds [3, 1]. However, no fundamental cycle on S can realise the optimal value $\|S\|^\triangle = 4 \cdot g - 4$ because no straight singular simplex on H^2 has maximal volume [5]; hence, $\|S\|^\triangle_Z > 4 \cdot g - 4$. Counting the number of faces in a singular chain with \mathbb{Z}-coefficients shows (because Δ^2 has an odd number of faces) that $\sum_{j=0}^k a_j$ is even for any \mathbb{Z}-cycle $\sum_{j=0}^k a_j \cdot \sigma_j \in C_2(S; \mathbb{Z})$. Hence, also $\sum_{j=0}^k |a_j|$ is even, and so $\|S\|^\triangle_Z \geq 4 \cdot g - 2$.

4.2. Passage to finite coverings. We will now combine Theorem 1.2 with multiplicativity of cubical simplicial volume under finite coverings to prove the estimate from above (Proposition 4.2).

Proposition 4.1 (multiplicativity under finite coverings). Let $N \longrightarrow M$ be a finite covering of oriented closed connected manifolds, and let $d \in \mathbb{N}$ be the number of sheets. Then

$$\|M\|_Z^{\square} = \frac{1}{d} \cdot \|N\|_Z^{\square}.$$

Proof. This can be shown literally in the same way as the corresponding multiplicativity for ordinary simplicial volume [10, Corollary 1.19]: The estimate “\leq” follows because d-sheeted covering maps have mapping degree $\pm d$; the converse estimate “\geq” follows via transfer of cubical singular cycles.

Proposition 4.2 (estimate from above). Let S be an oriented closed connected surface of genus $g > 0$. Then

$$\|S\|_Z^{\square} \leq 2 \cdot g - 2.$$

Bulletin of the Manifold Atlas 2017
Proof. For every \(d \in \mathbb{N}_{>0} \) there is a \(d \)-sheeted covering \(S(d) \to S \) of \(S \) by an oriented closed connected surface \(S(d) \); such coverings can be constructed geometrically or can be obtained from subgroups of \(\pi_1(S) \) of index \(d \). Because the Euler characteristic is multiplicative under finite coverings, we obtain that \(S(d) \) has genus

\[
g(d) := d \cdot (g - 1) + 1.
\]

From Proposition 4.1 and Theorem 1.2 we therefore obtain

\[
\|S\|_\square = \frac{1}{d} \cdot \|S(d)\|_\square \leq \frac{1}{d} \cdot \|S(d)\|_\square \leq \frac{1}{d} \cdot (2 \cdot g(d) - 1)
\]

\[
= 2 \cdot g - 2 + \frac{1}{d}.
\]

Taking the infimum over all \(d \in \mathbb{N}_{>0} \) gives the desired estimate. \(\square \)

References