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Cubical simplicial volume*

CLARA LÖH AND CHRISTIAN PLANKL

ABSTRACT. Cubical simplicial volume is a variation on simplicial volume, based
on cubes instead of simplices. Both invariants are homotopy invariants of ori-
ented closed connected manifolds. In this note, we prove that cubical simplicial
volume of oriented closed connected surfaces is proportional to ordinary simpli-
cial volume. More precisely, the cubical simplicial volume of an oriented closed
connected surface of genus g > 0 is equal to 2 · g− 2.
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1. INTRODUCTION

Simplicial volume is a homotopy invariant of manifolds measuring the mini-
mal complexity of singular fundamental cycles with R-coefficients [3, 9, 6]. Sim-
ilarly, cubical singular chains lead to cubical simplicial volume (see Section 2 for
the definitions).

In this note, we prove that cubical simplicial volume of oriented closed con-
nected surfaces is proportional to ordinary simplicial volume:

Theorem 1.1. Let S be an oriented closed connected surface of genus g > 0. Then

‖S‖� = 2 · g− 2 =
1
2
· ‖S‖4.

As in the case of simplicial volume [3, 1] the estimate ‖S‖� ≤ 2 · g − 2 can
be obtained from a corresponding estimate for integral cubical simplicial volume
and passage to finite coverings (Section 4).

Theorem 1.2. Let S be an oriented closed connected surface of genus g > 0. Then

‖S‖�Z ≤ 2 · g− 1 =
1
2
· ‖S‖4Z .

Conversely, subdividing singular squares into two singular simplices shows
that ‖S‖� ≥ 1/2 · ‖S‖4 = 1/2 · (4 · g − 4) (Section 3). Putting both estimates
together proves Theorem 1.1.

Using the classification of 3-manifolds, one can show that also in dimension 3
simplicial volume and cubical simplicial volme are proportional [7]. In higher
dimensions, the question whether cubical and ordinary simplicial volume are
proportional is an open problem [4, 5.40].
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2. CUBICAL SIMPLICIAL VOLUME

We briefly review the definition of simplicial volume and cubical simplicial
volume and introduce some notation.

2.1. Simplicial volume. We denote the singular chain complex and the singular
homology groups by C4∗ and H4∗ , respectively. For R ∈ {Z, R} we write | · |41,R

for the `1-“norm” on C4∗ ( · ; R) associated with the R-basis S∗( · ) of singular
simplices; notice that in the case R = Z we only have homogeneity with respect
to positive integers. Moreover, if X is a topological space, we write

‖ · ‖41,R : H4∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|41,R

∣∣ c ∈ C4∗ (X; R) is a cycle representing α
}

for the induced semi-“norm”; in the case R = Z, this semi-norm in general will
not be homogeneous. If M is an oriented closed connected manifold and if R
is a ring with unit, we denote the corresponding fundamental class by [M]4R ∈
H4∗ (M; R).

Definition 2.1. Let M be an oriented closed connected manifold. Then the simpli-
cial volume and integral simplicial volume of M are defined by

‖M‖4 :=
∥∥[M]4R ‖

4
1,R

‖M‖4Z :=
∥∥[M]4Z‖

4
1,Z.

Example 2.2. The existence of self-maps of non-zero degree implies that ‖Sn‖4 =
0 for all n ∈N>0 and that ‖S1 × S1‖4 = 0 [3][6, Corollary 2.2].

Moreover, ‖S2‖4Z = 2: Because ∆2 has an odd number of faces, no singular
2-cycle can consist of a single singular simplex; on the other hand, one can easily
construct fundamental cycles of S2 that consist of two singular simplices (with
opposite signs).

It is easy to see that simplicial volume and integral simplicial volume are ho-
motopy invariants of oriented closed connected manifolds. On the other hand, in
the presence of negative curvature, simplicial volume is related to the Riemann-
ian volume, which leads to geometric applications of simplicial volume [3, 11, 6].

2.2. Cubical simplicial volume. We quickly recall the definition of cubical sin-
gular homology [8, 2]: Replacing standard simplices with standard cubes leads to
cubical singular homology: For n ∈N let�n := [0, 1]n denote the standard n-cube.
If X is a topological space, then continuous maps of type�n −→ X are called sin-
gular n-cubes of X. The geometric/combinatorial boundary of �n consists of 2 · n
cubical faces. If R is a ring with unit, then a suitable alternating sum of these
faces allows to define a chain complex Q∗(X; R) of cubical singular chains with
R-coefficients (Figure 1). A singular cube is called degenerate if it factors over one
of the coordinate projections. Dividing out the subcomplex D∗(X; R) generated
by degenerate singular cubes leads to the cubical chain complex

C�∗ (X; R) := Q∗(X; R)/D∗(X; R)
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FIGURE 1. The boundary of the 2-cube consists of four 1-cubes
(with the indicated parametrisations and signs)

and hence to cubical singular homology H�∗ (X; R) (which admits a natural exten-
sion to a functor). Notice that dividing out degenerate singular cubes is necessary
in order for cubical singular homology of a point to be concentrated in degree 0.

For R ∈ {Z, R} we write | · |�1,R for the `1-“norm” on Q∗( · ; R) associated with
the R-basis of cubical singular simplices. If X is a topological space, we define the
cubical `1-semi-norm

‖ · ‖�1,R : H�∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|�1,R

∣∣ c ∈ Q∗(X; R) is a cycle

with [pX,R(c)] = α ∈ H�∗ (X; R)
}

,

where pX,R : Q∗(X; R) −→ C�∗ (X; R) is the canonical projection. I.e., we only look
at strict cubical cycles that represent the given class.

On the other hand, we can also consider the `1-“norm” | · |�1,R on C�∗ (X; R)
associated with the R-basis of non-degenerate cubical singular simplices. If X is a
topological space, we then write

‖ · ‖�1,R : H�∗ (X; R) −→ R≥0

α 7−→ inf
{
|c|�1,R

∣∣ c ∈ C�∗ (X; R) is a cycle representing α
}

for the induced semi-“norm”.

Proposition 2.3 (strict vs. degenerate cubical `1-semi-norm). Let X be a topologi-
cal space and let α ∈ H�∗ (X; R). Then

‖α‖�1,R = ‖α‖�1,R.

Proof. By definition, ‖ · ‖�1,R ≤ ‖ · ‖�1,R. For the converse estimate we look at the
following symmetrisation: For n ∈ N let Σ�n be the isometry group of the Eu-
clidean n-cube �n and let

ΣX,n : Qn(X; R) −→ Qn(X; R)

map(�n, X) 3 c 7−→ 1
|Σ�n |

· ∑
π∈Σ�

n

(−1)sgn π · c ◦ π;
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here, sgn encodes the orientation behaviour, i.e.,

sgn : Σ�n −→ {0, 1}

π 7−→
{

0 if π is orientation preserving
1 if π is orientation reversing.

A straightforward calculation shows that ΣX : Q∗(X; R) −→ Q∗(X; R) is a chain
map. By construction, ‖ΣX‖ ≤ 1 with respect to | · |�1,R. Furthermore, a reflection
argument shows that ΣX maps degenerate singular cubes to 0. Hence, ΣX factors
over C�∗ (X; R) and composition with the projection pX : Q∗(X; R) −→ C�(X; R)
yields a chain map

ΣX : C�∗ (X; R) −→ Q∗(X; R) −→ C�∗ (X; R).

Clearly, ‖ΣX‖ ≤ 1 with respect to | · |�1,R. Moreover, it is not hard to see that
H∗(ΣX) = idH�∗ (X;R). Therefore, ‖ · ‖�1,R ≤ ‖ · ‖�1,R. �

It is well known that there is a canonical natural (both in spaces and coeffi-
cients) isomorphism H�∗ −→ H4∗ [2, Theorem V]. However, in general this iso-
morphism is not isometric with respect to the corresponding `1-semi-norms.

If M is an oriented closed connected manifold and if R is a ring with unit,
we denote the corresponding fundamental class in cubical singular homology
by [M]�R ∈ H�∗ (M; R).

Definition 2.4. Let M be an oriented closed connected manifold. Then the cubical
simplicial volume and integral cubical simplicial volume of M are defined by

‖M‖� :=
∥∥[M]�R‖�1,R

‖M‖�Z :=
∥∥[M]�Z‖�1,Z.

In view of Proposition 2.3 we have ‖M‖� = ‖[M]�R‖�1,R for all oriented closed
connected manifolds M. It is not clear whether the same also holds with integral
coefficients.

Example 2.5. Again, self-maps show that ‖Sn‖� = 0 for all n ∈ N>0 and that
‖S1 × S1‖� = 0.

Wrapping a square around S2 and mapping the whole boundary of �2 to a
single point shows that ‖S2‖�Z = 1.

3. ESTIMATING CUBICAL SIMPLICIAL VOLUME OF SURFACES FROM BELOW

We will now provide the estimate for cubical simplicial volume of surfaces
from below in terms of ordinary simplicial volume. To this end, we subdivide
singular squares into two singular simplices:
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FIGURE 2. Subdividing a square into two triangles

Lemma 3.1 (subdivision of squares).
(1) Let X be a topological space and let R be a ring with unit. Then the natural

map

ϕX,R : Q2(X; R) −→ C42 (X; R)

map(�2, X) 3 κ 7−→ κ ◦ i1 − κ ◦ i2

induces a well-defined natural map

ΦX,R : H2
(
Q∗(X; R)

)
−→ H42 (X; R)

[c] 7−→
[
ϕX(c)

]
.

Here, i1 · ∆2 −→ �2 and i2 · ∆2 −→ �2 denote the affine inclusion of the
“lower” and “upper” triangle into the square as indicated in Figure 2.

(2) In particular, we obtain a well-defined natural map

ΦX,R := ΦX,R ◦ H2(ΣX) : H�2 (X; R) −→ H42 (X; R)

(3) If S is an oriented closed connected surface, then ΦS,R maps fundamental
classes to fundamental classes, i.e., ΦS,R([S]�R) = ±[S]

4
R .

Proof. A straightforward calculation shows that ϕX,R maps strict cubical cycles
to ordinary singular cycles. Moreover, a suitable subdivision and orientation of
cubes into two prisms and hence six tetrahedra witnesses that ϕX,R maps bound-
aries to boundaries. This shows the first part.

The second part follows directly fromt the first part.
The third part follows by considering the local case of (R2, R2 \ {0}), for which

the corresponding statement is easily seen to be true. �

Proposition 3.2 (estimate from below). Let S be an oriented closed connected
surface of genus g > 0. Then

‖S‖� ≥ 1
2
· ‖S‖4 = 2 · g− 2.

Proof. Clearly, we have ‖ϕS,R(c)‖41,R ≤ 2 · ‖c‖�1,R for all chains c in Q2(S; R).
Therefore, Proposition 2.3, Lemma 3.1, and ‖ΣS‖ ≤ 1 imply

‖S‖� =
∥∥[S]�R∥∥�1,R ≥

1
2
· ‖S‖4.

Moreover, it is well known that ‖S‖4 = 4 · g− 4 holds [3, 1]. �
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FIGURE 3. A representation of the oriented closed connected sur-
face of genus g, and a cubical fundamental cycle

4. ESTIMATING CUBICAL SIMPLICIAL VOLUME OF SURFACES FROM ABOVE

4.1. Integral cubical simplicial volume of surfaces. The core of the proof of The-
orem 1.2 is constructing explicit integral cubical fundamental cycles of surfaces:

Proof of Theorem 1.2. By the classification of surfaces, we can view an oriented
closed connected surface S of genus g > 0 as a quotient of the regular 4 · g-gon Xg,
where the edges a1, b1, α1, β1, . . . , ag, bg, αg, βg are oriented as in Figure 3 and each
latin edge is glued to the corresponding greek edge. Moreover, we enumerate the
vertices of Xg as indicated in Figure 3 from 1 to 4 · g. We introduce the following
diagonals: For j ∈ {1, . . . , g} let cj be the diagonal from vertex 4 · j to vertex 1;
for j ∈ {2, . . . , g} let dj be the diagonal from vertex 1 to vertex 4 · j − 2. Notice
that cg = a1.

For a label a of directed edges/diagonals in Xg as above, we define the singular
1-cube �a : �1 −→ Xg as the linear parametrisation of the directed segment cor-
responding to a. For labels a, b, c, d of directed edges/diagonals in Xg that form a
quadrilateral in Xg oriented as in Figure 4, we define the singular 2-cube

�a,b,c,d : �2 −→ Xg

as a parametrisation of the convex quadrilateral given by a, b, c, d that induces on
the boundary the linear parametrisation on the faces a, b, c, d, i.e., such that

∂�(�a,b,c,d) = �a +�b −�c −�d

holds.
We then consider the cubical 2-chain

�c1,b1,α1,β1 +
g

∑
j=2

(�aj,bj,dj,cj−1
+�cj,dj,αj,β j) ∈ Q2(Xg; Z)

and the corresponding induced cubical 2-chain sg on S. A straightforward cal-
culation shows that sg indeed is a cycle in Q∗(S; Z) (the singular 1-cubes on the
quotient S induced from a latin letter and the corresponding greek letter coincide
because of the gluing).
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FIGURE 4. A convex quadrilateral with labels and directed edges

Looking at the induced class in H2(S, S \ {x}; Z) for some point x ∈ S that does
not lie on any face of a cube in sg shows that [pS,Z(sg)] = ±[S]�Z ∈ H�2 (S; Z).
Hence,

‖S‖�Z ≤ |sg|�1,Z = 2 · g− 1.

It remains to show that ‖S‖4Z = 4 · g− 2: By a similar construction as above, it
is well known that ‖S‖4Z ≤ 4 · g− 2 holds [3, 1]. However, no fundamental cycle
on S can realise the optimal value ‖S‖4 = 4 · g− 4 because no straight singular
simplex on H2 has maximal volume [5]; hence, ‖S‖4Z > 4 · g− 4. Counting the
number of faces in a singular chain with Z-coefficients shows (because ∆2 has an
odd number of faces) that ∑k

j=0 aj is even for any Z-cycle ∑k
j=0 aj · σj ∈ C2(S; Z).

Hence, also ∑k
j=0 |aj| is even, and so ‖S‖4Z ≥ 4 · g− 2. �

4.2. Passage to finite coverings. We will now combine Theorem 1.2 with multi-
plicativity of cubical simplicial volume under finite coverings to prove the esti-
mate from above (Proposition 4.2).

Proposition 4.1 (multiplicativity under finite coverings). Let N −→ M be a finite
covering of oriented closed connected manifolds, and let d ∈N be the number of
sheets. Then

‖M‖� =
1
d
· ‖N‖�.

Proof. This can be shown literally in the same way as the corresponding multi-
plicativity for ordinary simplicial volume [10, Corollary 1.19]: The estimate “≤”
follows because d-sheeted covering maps have mapping degree±d; the converse
estimate “≥” follows via transfer of cubical singular cycles. �

Proposition 4.2 (estimate from above). Let S be an oriented closed connected
surface of genus g > 0. Then

‖S‖� ≤ 2 · g− 2.
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Proof. For every d ∈ N>0 there is a d-sheeted covering S(d) −→ S of S by an
oriented closed connected surface S(d); such coverings can be constructed geo-
metrically or can be obtained from subgroups of π1(S) of index d. Because the
Euler characteristic is multiplicative under finite coverings, we obtain that S(d)
has genus

g(d) := d · (g− 1) + 1.
From Proposition 4.1 and Theorem 1.2 we therefore obtain

‖S‖� =
1
d
· ‖S(d)‖� ≤ 1

d
· ‖S(d)‖�Z ≤

1
d
·
(
2 · g(d)− 1

)
= 2 · g− 2 +

1
d

.

Taking the infimum over all d ∈N>0 gives the desired estimate. �
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