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Orientation of manifolds in generalized cohomology
theories - definition*

YULI RUDYAK

1. Preliminaries

One of classical definitions of orientability of a closed connected manifold M is
the existence of the fundamental class [M ] ∈ Hn(M). It is clear that this defini-
tion is very suitable to generalize it to generalize (co)homology theories, and this
generalization turns out to be highly productive and fruitful.

For the definition of spectra, ring spectra, etc, see [6].
For definitions of generalized (co)homology and their relation to spectra see [6].
The sign ∼= denotes an isomorphism of groups or homeomorphism of spaces.
I reserve the term “classical orientation” for orientation in ordinary (co)homology,

see e.g. [4].
We denote the ith Stiefel-Whitney class by wi.

2. Basic definition

LetM be a topological n-dimensional manifold, possibly with boundary. Consider
a point m ∈ M \ ∂M and an open disk neighborhood U of m. Let ε = εm,U :
(M,∂M)→ (Sn, ∗) be the map that collapses the complement of U .

Let E be a commutative ring spectrum, and let sn = sEn ∈ En(Sn, ∗) be the image
of 1 ∈ π0(E) under the isomorphism

π0(E) = Ẽ0(S0) ∼= Ẽn(Sn) = En(Sn, ∗).

Definition 2.1. LetM be a compact topological n-dimensional manifold (not neces-
sarily connected). An element [M,∂M ] = [M,∂M ]E ∈ En(M,∂M) is called an ori-
entation of M with respect to E, or, briefly, an E-orientation ofM , if εm,U∗ [M,∂M ] =
±sn ∈ En(Sn, ∗) for every m and every disk neighborhood U of m.

Note that a non-connected M is E-orientable iff all its components are.
A manifold with a fixed E-orientation is called E-oriented, and a manifold which

admits an E-orientation is called E-orientable. So, an E-oriented manifold is in fact
a pair (M, [M ]E).

It follows from the classical orientability that a classically oriented manifold is
HZ-orientable, see [4]. Conversely, if a connected manifold is HZ-orientable then
Hn(M,∂M)) = Z (indeed, we know that eitherHn(M,∂M) = Z orHn(M,∂M) = 0,
but the second case is impossible because ε∗ : Hn(M,∂M) → Hn(Sn, ∗) must be
surjective). Hence, a connected manifold M is HZ-orientable iff Hn(M,∂M) = Z,
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i.e., iff M is classically orientable. Thus, for arbitrary (not necessarily connected)
M is HZ-orientable iff M is classically orientable

Note that sn is a canonical E-orientation of the sphere Sn.
The following proposition holds because, for every two pairs (m,U) and (m′, U ′)

with M connected, the maps εm,U and εm′,U ′ are homotopic.
Proposition 2.2. Let M be a connected manifold, and let U0 be an open disk neigh-
borhood of a point m0 ∈M \∂M . If an element [M,∂M ] ∈ En(M,∂M) is such that
εm0,U0
∗ [M,∂M ] = ±sn, then [M,∂M ] is an E-orientation of M .
For the proof, see [6, Proposition V.2.2].

3. Number of orientations

LetM be a connected manifold. Let u be and E-orientation ofM with ε∗(u) = sn.
Consider another E-orientation u′ with εu′ = sn. Then ε∗(u−u′) = 0, and so u−u′ ∈
Ker(ε∗ : En(M,∂M) → En(Sn, ∗)). Conversely, if α ∈ Ker(ε∗ : En(M,∂M) →
En(Sn, ∗)) and v is an E-orientation of M then v + α is an E-orientation of M
because ε∗(u+ α) = ε∗(u).

Furthermore, if u is an E-orientation of M with ε∗(u) = sn then −u is an E-
orientation of M with ε∗(−u) = −sn,

Thus, if M is a connected E-oriented manifold, then there is a bijection between
the set of all E-orientations of M and the set

±u+ Ker(ε∗ : En(M,∂M)→ En(Sn, ∗)) ⊂ En(M,∂M),
where u is any E-orientation of M .

4. Relation to normal and tangent bundles

Classical orientability of a smooth manifold M is equivalent to the existence of
a Thom class of the tangent (or normal) bundle of M , see [4, Theorem 7.1]. The
similar claim holds for generalized (co)homology.

Given a vector n-dimensional bundle ξ over a compact space X, consider the
Thom space Tξ, the one-point compactification of the total space of ξ. Then for
every x ∈ X the inclusion of fiber Rn

x = Rn to the total space of ξ yields an inclusion
ix : Sn = Sxn → Tξ, where Snx is the one-point compactification of Rn

x. Now, given a
ring spectrum E, note the canonical isomorphism Ẽn(Sn) ∼= Ẽn(Sn) and denote by
sn ∈ Ẽn(Sn) the image of sn under this isomorphism.
Definition 4.1. A Thom-Dold class of ξ with respect to E (on a E-orientation of
ξ) is a class U = Uξ such that i∗xU = ±sn for all x ∈ X.
Theorem 4.2. A (smooth) manifold M is E-orientable if and only if the tangent
(or normal) bundle of M is E-orientable. Moreover, E-orientations of M are in a
bijective correspondence with E-orientations of (stable) normal bundle of M .

For the proof, see [6, Theorem V.2.4 and Corollary V.2.6].
Furthermore, Theorem 4.2 holds for topological manifolds as well, if we are careful

with the concept of Thom spaces and their normal bundles for topological manifolds,
see [6, Definitions IV.5.1 and IV.7.12]. To apply the theory to microbundles, use [6,
Theorem IV.7.7].
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5. Products

Here we show that the product M ×N of two E-oriented manifolds Mm and Nn

admits a canonical E-orientation. For sake of simplicity, assume M and N to be
closed. Consider two collapsing maps εM : M → Sm and εn : N → Sn and form the
map

M ×N εM×εN−→ Sm × Sn → Sm ∧ Sn = Sm+n.

It is easy to see that this composition is (homotopic to) ε = εM×N .
Now, let [M ] and [N ] be E-orientations of M and N , respectively. Consider the

commutative diagram

Em(M)⊗ En(N)

��

µ // Em+n(M ×N) ε∗ //

(εM )∗⊗(εN )∗
��

Em+n(Sm+n)
=
��

Em(Sm)⊗ En(Sn) µ′ // Em+n(Sm × Sn) // Em+n(Sm+n)

where µ, µ′ are given by the ring structure on E. Because of the commutativity of
the above diagram, we see that ε∗(µ([M ] ⊗ [N ])) = ±sm+n. Thus [M ] ⊗ [N ] is an
E-orientation.

It is also worthy to note that if M and M ×N are E-orientable then N is, cf. [6,
V.1.10(ii)].

6. Poincaré Duality

Let F be an E-module spectrum. Given a closed E-oriented manifold (M, [M ]E),
consider the homomorphism

_ [M ]E : F i(M)→ Fn−i(M)
where Ei(X) _ Fj(X)→ Fj−i(X) is the cap product.

It turns out to be that_ [M ]E is an isomorphism. This is called Poincaré duality
and is frequently denoted by PM : F i(M)→ Fn−i(M).

The Poincaré duality isomorphism admits the following alternative description:
P = P[M ]E : F i(M) ϕ−→ F i(Tν) ∼= F̃n−i(M+) = Fn−i(M).

Here Tν is the Thom spectrum of the stable normal bundle ν of M , and ϕ is
the Thom-Dold isomorphism given by an E-orientation (Thom-Dold class) U of ν,
which, in turn, is given by the E-orientation [M ]E of M according to Theorem 4.2.

For the proofs of the statements in this section, see [6, Theorem 2.9].

7. Transfer

Definition 7.1. Let F be a module spectrum over a ring spectrum E. Let f :
Mm → Nn be a map of closed manifolds.

Suppose that both M,N are E-oriented, and let PM , PN be the Poincaré duality
isomorphisms, respectively. We define the transfers (other names: Umkehrs, Gysin
homomorphisms)

f ! : F i(M)→ F n−m+i(N), f! : Fi(N)→ Fm−n+i(M)
to be the compositions
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f ! : F i(M) ∼= Fm−i(M) f∗−→ Fm−i(N) ∼= F n−m+i(M), f ! = P−1
[N ]f∗P[M ],

f! : Fi(N) ∼= F n−i(N) f∗−→ F n−i(M) ∼= Fm−n+i(N), f! = P[M ]f
∗P−1

[N ].

The reader can find many good properties of transfers in Dold [2], Dyer [3], Rudyak
[6].

If f : Mn → Nn is a map of closed HZ-oriented manifolds then

f∗f!(x) = (deg f)x

for every x ∈ H∗(N). In particular, if deg f = 1 then f∗ : H∗(M)→ H∗(N) is epic.
Similarly, f ∗ : H∗(N) → H∗(M) is a monomorphism if deg f = 1. Theorem 7.2
below generalizes this fact.

Theorem 7.2 ([6, Lemma V.2.12 and Theorem V.2.14]). Let E be a ring spectrum.
Let f : Mn → Nn be a map of degree ±1 of closed HZ-orientable manifolds. If [M ]
is an E-orientation of M then f∗[M ] is an E-orientation of N . In particular, the
manifold N is E-orientable if M is. Moreover, in this case f ∗ : F ∗(N)→ F ∗(M) is
monic and f∗ : F∗(M)→ F∗(N) is epic for every E-module spectrum F .

8. Examples

Here we list several examples.
(a) An ordinary (co)homology modulo 2. Represented by the Eilenberg-MacLane
spectrum HZ/2. Every manifold is HZ/2-orientable; for M connected the orienta-
tion is given be modulo 2 fundamental class. see [2]. Vice versa, if a ring spectrum E
is such that every manifold is E-orientable, then E is a graded Eilenberg-MacLane
spectrum and 2π∗(E) = 0.
(b) An ordinary (co)homology. Represented by the Eilenberg–MacLane spectrum
HZ. By Theorem 4.2 and [6, IV.5.8(ii)], classical orientability is justHZ-orientability.
In particular, a smooth manifold is HZ-orientable iff the structure group of its nor-
mal and/or tangent bundle can be reduced to SO. Furthermore, HZ-orientability
of a manifold M is equivalent to the equality w1(M) = 0.
(c) KO-theory. Atiyah-Bott-Shapiro [1] proved that a smooth manifold M is KO-
orientable if and only if it admits a Spin-structure. This holds, in turn, iff w1(M) =
0 = w2(M . This condition is purely homotopic and can be formulated for every
topological manifold (in fact, for Poincaré spaces) in view the equality wi(M)U =
Sqi(U) where U is the modulo 2 Thom class of the tangent bundle.

The equality w1(M) = 0 = w2(M) is necessary for KO-orientability of topolog-
ical manifolds, but it is not sufficient for KO-orientability even of piecewise linear
manifolds, see [6, Ch. VI]. One the other hand, Sullivan proved that every topolog-
ical manifold is KO[1/2]-orientable, see Madsen-Milgram [5] for a good proof. Here
KO[1/2] is the Z[1/2]-localized KO-theory.

Note that complex manifold are E-oriented for all E from (a,b,c) (but not (d, e)
below).
(d) Complex K-theory. The complexification C : BOn → BUn induces a ring
morphism KO → K. So, every KO-orientable manifold is K-orientable.
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Atiyah-Bott-Shapiro [1] proved that a smooth manifold M is K-orientable iff it
admits a SpinC-structure. The last condition is equivalent to the purely homotopic
conditions w1(M) = 0 = δw2(M), where δ is the connecting homomorphism in the
Bockstein exact sequence

· · · → H∗(X) 2−→ H∗(X) mod 2−→ H∗(X;Z/2) δ−→ H∗(X)→ . . . .

This condition is necessary for K-orientability of manifolds, but it is not sufficient
for K-orientability of piecewise linearly (and hence topological) manifolds, see [6,
Ch. VI]. On the other hand, every classically oriented topological manifold isK[1/2]-
orientable in view of Sullivan’s result mentioned in example (c).
(e) Stable (co)homotopy groups, or frames (co)bordism theory. Represented by the
spectrum S. Because of Theorem 4.2, a manifold Mn is orientable with respect to
the sphere spectrum S iff its tangent bundle τM has trivial stable fiber homotopy
type, i.e., iff there exists N such that τ ⊕ θN is equivalent to θN+n where θk is a
trivial k-dimensional bundle. In particular, we have the following necessary (but
not sufficient) condition: wi(M) = 0 for all i.

Note that S-orientability implies KO-orientability implies K-orientability implies
HZ-orientability implies HZ/2-orientability. Furthermore, any S-orientable mani-
fold is E-orientable for every ring spectrum E, cf. [6, I.1.6]. So, (a) and (e) appear
as two extremal cases.
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