Wu class - definition*

KARLHEINZ KNAPP

1. INTRODUCTION

The Wu class of a manifold M is a characteristic class allowing a computation of the Stiefel-Whitney classes of M by knowing only $H^*(M; \mathbb{Z}/2)$ and the action of the Steenrod squares.

2. Definition

Let M be a closed topological *n*-manifold, $[M] \in H_n(M; \mathbb{Z}/2)$ its fundamental class, Sq^k the k-th Steenrod square and

$$\langle , \rangle : H^i(M; \mathbb{Z}/2) \times H_i(M; \mathbb{Z}/2) \longrightarrow \mathbb{Z}/2$$

the usual Kronecker pairing. This pairing, together with the Poincarè duality isomorphism $a \mapsto a \cap [M]$, induces isomorphisms

$$\operatorname{Hom}(H^{n-k}(M;\mathbb{Z}/2),\mathbb{Z}/2) \cong H_{n-k}(M;\mathbb{Z}/2) \cong H^k(M;\mathbb{Z}/2),$$

under which the homomorphism $x \mapsto \langle Sq^k(x), [M] \rangle$ from $H^{n-k}(M; \mathbb{Z}/2)$ to $\mathbb{Z}/2$ corresponds to a well defined cohomology class $v_k \in H^k(M; \mathbb{Z}/2)$. This cohomology class is called the *k*-th Wu class of M ([4, §11]). We may rewrite its definition equivalently as an identity

(1)
$$\langle v_k \cup x, [M] \rangle = \langle Sq^k(x), [M] \rangle$$
 for all $x \in H^{n-k}(M; \mathbb{Z}/2)$.

Define the total Wu class

$$v \in H^*(M; \mathbb{Z}/2) = H^0(M; \mathbb{Z}/2) \oplus H^1(M; \mathbb{Z}/2) \oplus \dots \oplus H^n(M; \mathbb{Z}/2),$$

as the formal sum

$$v := 1 + v_1 + v_2 + \dots + v_n.$$

Using the total Steenrod square,

$$Sq := Sq^0 + Sq^1 + Sq^2 + \ldots : H^*(M; \mathbb{Z}/2) \longrightarrow H^*(M; \mathbb{Z}/2),$$

equation (1) translates into the following formula

(2)
$$\langle v \cup x, [M] \rangle = \langle Sq(x), [M] \rangle$$
 for all $x \in H^*(M; \mathbb{Z}/2)$,

which may also be used as a definition of the total Wu class of M.

From the definition it is clear that the Wu class is defined even for a Poincarè complex M.

Accepted: 8th February 2014

^{*}Atlas page :www.map.mpim-bonn.mpg.de/Wu_class

3. Relation to Stiefel-Whitney classes

From now on all manifolds are supposed to be smooth. The following theorem of Wu Wen-Tsun ([7]) allows a computation of the Stiefel-Whitney classes $w_i(M)$ of M using only $H^*(M; \mathbb{Z}/2)$ and the action of the Steenrod squares:

Theorem 1. The total Stiefel-Whitney class of M,

$$w = w(M) := 1 + w_1(M) + w_2(M) + \dots + w_n(M),$$

is given by

$$w(M) = Sq(v),$$

or equivalently

$$w_k(M) = \sum_{i=0} Sq^i(v_{k-i}).$$

For a proof see $[4, \S11]$. Since Sq is a ring automorphism of

$$H^{**}(X;\mathbb{Z}/2) := \prod_{i>0} H^i(X;\mathbb{Z}/2)$$

 Sq^{-1} is defined on $H^{**}(M; \mathbb{Z}/2) = H^*(M; \mathbb{Z}/2)$ and we may write $v = Sq^{-1}(w(M)).$

The formula w(M) = Sq(v) may be used to extend the definition of the Stiefel-Whitney classes to the class of topological manifolds.

4. An example

The following example is taken from [4, §11]. If $H^*(M; \mathbb{Z}/2)$ is of the form $\mathbb{Z}/2[x]/(x^{dm+1})$, where $x \in H^d(X; \mathbb{Z}/2)$, $d \ge 1$, $n = d \cdot m$, for example if $M = \mathbb{C}P^m$, then

$$v = (1 + x + x^2 + x^4 + \dots)^{m+1}$$
 and $w(M) = (1 + x)^{m+1}$

with

$$Sq(x) = x + x^2$$
 and $Sq^{-1}(x) = x + x^2 + x^4 + \dots$

5. A GENERALIZATION

The following example is taken from [1]. Let λ be a natural ring automorphism of $H^{**}(X; \mathbb{Z}/2)$ and Φ_{ξ} the Thom isomorphism of a real vector bundle ξ on X. Define (3) $\underline{\lambda} = \underline{\lambda}(\xi) := \Phi_{\xi}^{-1} \circ \lambda \circ \Phi_{\xi}(1)$ and $\operatorname{Wu}(\lambda, \xi) := \lambda^{-1} \circ \underline{\lambda} = \lambda^{-1} \circ \Phi_{\xi}^{-1} \circ \lambda \circ \Phi_{\xi}(1)$. If $\lambda = Sq$, then $\underline{\lambda} = w$ is the total Stiefel-Whitney classes $w(\xi)$ of ξ ([4, §8]) and with $\xi = \tau M$, the tangent bundle of X = M, we have $\operatorname{Wu}(Sq, \tau M) = v$, the total Wu class of M.

In general $\xi \mapsto \underline{\lambda}(\xi)$ and $\xi \mapsto Wu(\lambda, \xi)$ define multiplicative characteristic classes, translating Whitney sum into cup product, i.e. they satisfy a Whitney product type formula

 $\underline{\lambda}(\xi \oplus \eta) = \underline{\lambda}(\xi) \cup \underline{\lambda}(\eta) \text{ and } Wu(\lambda, \xi \oplus \eta) = Wu(\lambda, \xi) \cup Wu(\lambda, \eta).$

Such a characteristic class is determined by a power series $f(x) \in \mathbb{Z}/2[[x]]$, which is given by its value on the universal line bundle. The generalized Wu class $\operatorname{Wu}(\lambda, \xi)$ is defined as a commutator class, thus measuring how λ and Φ_{ξ} commute. This is

Bulletin of the Manifold Atlas - definiton 2014

similar to the situation considered in the (differential) Riemann-Roch formulas, in which the interaction between the Chern character and the Thom isomorphism in K-Theory and rational cohomology is formulated. This relation is more than only formal: Let T_i be the *i*-th Todd polynomial, then $2^i \cdot T_i$ is a rational polynomial with denominators prime to 2, hence its reduction to mod 2 cohomology is well defined. Then Atiyah and Hirzebruch proved:

Theorem 2 ([1]).

Wu
$$(Sq, \xi) = \sum_{i \ge 0} 2^i \cdot T_i(w_1(\xi), w_2(\xi), \dots, w_i(\xi))$$
 in $H^{**}(X; \mathbb{Z}/2)$.

The proof is by comparing the power series belonging to the multiplicative characteristic classes on both sides of the equation, which turn out to be $x/Sq^{-1}(x) = 1 + \sum_{i>0} x^{2^i}$.

For a continuous map $f: M \to N$ between closed differentiable manifolds the analogue of the Riemann-Roch formula is

$$f_!(\lambda(x) \cup \operatorname{Wu}(\lambda^{-1}, \tau M)) = \lambda(f_!(x)) \cup \operatorname{Wu}(\lambda^{-1}, \tau N).$$

Here $f_!$ is the Umkehr map of f defined by f_* via Poincarè duality. In the case $f: M \to *$, this reduces to $\langle Wu(\lambda, \tau M) \cup x, [M] \rangle = \langle \lambda(x), [M] \rangle$, generalizing (2).

6. Applications

- (1) The definition of the total Wu class v and w = Sq(v) show, that the Stiefel-Whitney classes of a smooth manifold are invariants of its homotopy type.
- (2) Since the Stiefel-Whitney classes of a closed *n*-manifold determine its unoriented bordism class [6, Théorèm IV.10], a corollary of (1) is: Homotopy equivalent manifolds are un-oriented bordant.
- (3) Inserting the Stiefel-Whitney classes of M for x in

$$\langle v \cup x, [M] \rangle = \langle Sq(x), [M] \rangle,$$

and using $v = Sq^{-1}(w)$ one gets relations between Stiefel-Whitney numbers of *n*-manifolds. It is a result of Dold ([2]) that all relations between Stiefel-Whitney numbers of *n*-manifolds are obtained in this way.

- 4. Conditions on the Wu classes v_s for nonbounding manifolds are given in [5].
- 5. For an appearance of the Wu class in surgery theory see [3, Ch. 4].

Remarks:

- 1. Most of the above has analogues for odd primes, e.g. see [1].
- 2. Not directly related to the Wu class is Wu's explicit formula for the action of Steenrod squares on the Stiefel-Whitney classes of a vector bundle ξ (see [4, §8]):

$$Sq^{k}(w_{m}(\xi)) = w_{k} \cup w_{m} + \binom{k-m}{1} w_{k-1} \cup w_{m+1} + \dots + \binom{k-m}{k} w_{0} \cup w_{m+k}$$

where $\binom{x}{i} = x(x-1) \dots (x-i+1)/i!$.

Bulletin of the Manifold Atlas - definition 2014

References

- Atiyah, M. F., Hirzebruch, F. : Cohomologie-Operationen und charakteristische Klassen. Math. Zeitschrift 77 (1961), 149-187.
- [2] Dold, A.: Vollständigkeit der Wuschen Relationen zwischen den Stiefel-Whitneyschen Zahlen differenzierbarer Mannigfaltigkeiten. Math. Zeitschrift 65 (1956), 704-707.
- [3] Madsen, I., Milgram, J. : The classifying spaces for surgery and cobordism of manifolds. Ann. of Math. Stud. 92, Princeton Univ. Press, 1979.
- [4] Milnor, J. W., Stasheff, J. D. : Characteristic classes. Ann. of Math. Stud. 76, Princeton Univ. Press, 1974.
- [5] Stong, R., Yoshida, T.: Wu classes. Proceedings of the AMS 100 (1987), 352-354.
- [6] Thom R.: Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954), 17-86.
- [7] Wu Wen-Tsun : Classes caractéristiques et *i*-carrés d'une variété. C. R. Acad. Sci., Paris 230 (1950), 508-511.

FACHGRUPPE MATHEMATIK BERGISCHE UNIVERSITÄT WUPPERTAL GAUSSSTR. 20 42097 WUPPERTAL, GEMANY

E-mail address: knapp@math.uni-wuppertal.de *Web address:* http://www2.math.uni-wuppertal.de/~knapp/index.html