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1. Introduction and Definition

Even if one is interested only in finite-dimensional manifolds, the need for infinite-
dimensional manifolds sometimes arises. For example, one approach to study closed
geodesics on a manifold is to use Morse theory on its (free) loop space; while for some
purposes it is enough to work with finite-dimensional approximations, it is helpful
for some finer aspects of the theory to use models of the free loop space that are
infinite-dimensional manifolds. The use of Morse theory in an infinite-dimensional
context is even more important for other (partial) differential equations like those
occuring in the theory of minimal surfaces and the Yang-Mills equations. Morse
theory for infinite dimensional manifolds was developed by Palais and Smale ([20],
[21]).

While there is up to isomorphism only one vector space of every finite dimension,
there are many different kinds of infinite-dimensional topological vector spaces one
can choose. Modeling spaces on Fréchet spaces gives the notion of Fréchet manifolds,
modelling on Banach spaces gives Banach manifolds, modelling on the Hilbert cube
(the countably infinite product of intervals) gives Hilbert cube manifolds. We will
stick to Hilbert manifolds (which are not directly related to Hilbert cube manifolds).

Definition 1.1. Let H be the (up to isomorphism unique) separable Hilbert space
of infinite dimension. Then a Hilbert manifold is a separable metrizable space such
that every point has a neighborhood that is homeomorphic to an open subset of H.

Some authors have slightly different definitions, leaving out the metrizability or
the separability condition. Note that metrizability always implies paracompactness
and here also the converse is true. Being metrizable and separable is in this context
also equivalent to being second countable and Hausdorff by Uryson’s metrization
theorem (see also [11, 4(A)]).

Note that every separable Frechet space is homeomorphic to the separable Hilbert
space (see [1]). Thus, the structure of a topological Hilbert manifold is not different
from that of a topological Frechet manifold; only in the differentiable case differ-
ences show up. A Ck-structure for k = 0, 1, . . . ,∞, ω can be defined as usual as
an equivalence class of atlases whose chart transition maps are of class Ck. Here,
Cω stands for analytic functions. The tangent bundle of Hilbert manifold can also
be defined as usual for k ≥ 1 and is a Hilbert space bundle with structure group
GL(H) with the norm topology (see [17], II.1 and III.2).

A submanifold of a Hilbert manifold X is a subset Y ⊂ X such that for every
point y ∈ Y there is an open neighborhood V of y in X and a homeomorphism
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ψ : V → W to an open subset W ⊂ H such that ψ(V ∩ Y ) = W ∩ U for U a closed
linear subspace of H.

2. Properties

2.1. Basic Differential Topology. Many basic theorems of differential topology
carry over from the finite dimensional situation to the Hilbert (and even Banach)
setting with little change. For example, every smooth submanifold of a smooth
Hilbert manifold has a tubular neighborhood, unique up to isotopy (see [17] IV.5-6
and also [23] for the non-closed case.). Also, every Hilbert manifold can be em-
bedded as a closed submanifold into the standard Hilbert space ([15]). However, in
statements involving maps between manifolds, one often has to restrict considera-
tion to Fredholm maps, i.e. maps whose differential at every point has closed image
and finite-dimensional kernel and cokernel. The reason for this is that Sard’s lemma
holds for Fredholm maps, but not in general (see [24] and [3]). The precise statement
is:

Theorem 2.1 ([24]). Let f : M → N be a smooth Fredholm map between Hilbert
manifolds. Then its set of regular values is the intersection of countably many sets
with dense interior.

2.2. Homotopy Theory.

Theorem 2.2 ([22], Theorem 5, Theorem 14]). Every Hilbert manifold is an absolute
neighborhood retract and has therefore the homotopy type of a countable, locally finite
simplicial complex.

On the other hand, every countable, locally finite simplicial complex is homotopy
equivalent to an open subset of the standard Hilbert space. Thus, the homotopy
classification of Hilbert manifolds is equivalent to that of countable, locally finite
simplicial complexes or, equivalently, countable CW-complexes (see [6], Section 10).

2.3. Specialties of Infinite Dimension. While proofs are often harder in infinite
dimensions, some things are true for Hilbert manifolds that could not be hoped for
in finite dimensions.

Theorem 2.3 ([16]). The unitary group and the general linear group of the (real or
complex) separable infinite-dimensional Hilbert space are contractible with the norm
topology.

Corollary 2.4. If X is a paracompact space, then every (real or complex) Hilbert
space vector bundle with these structure groups over X is trivial. In particular, every
(smooth) Hilbert manifold is parallelizable.

Theorem 2.5 ([12], [10]). Every Hilbert manifold X can be embedded onto an open
subset of the model Hilbert space.

Theorem 2.6 ([6], [19]). Every homotopy equivalence between two smooth Hilbert
manifolds is homotopic to a diffeomorphism. In particular every two homotopy
equivalent smooth Hilbert manifolds are already diffeomorphic.
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Indeed, Burghelea and Kuiper show this result under the assumption of the ex-
istence of a Morse function and Moulis shows the existence of a Morse function on
an open subset of the standard Hilbert space.

Theorem 2.7 ([5], [7]). Every topological Hilbert manifolds possesses a (unique)
smooth structure. Every homeomorphism of a differentiable Hilbert manifold is iso-
topic (through homeomorphisms) to a diffeomorphisms. Moreover every two homo-
topic diffeomorphisms are isotopic (through diffeomorphisms).

Thus, the category of topological Hilbert manifolds with homeomorphisms up to
isotopy and the category of smooth Hilbert manifolds with diffeomorphisms up to
isotopy are equivalent.

The situation is different for complex analytic structures. These always exist, but
are not unique. Indeed, there are infinitely many nonequivalent complex analytic
structures on every Hilbert manifold (see [4]).

Although Sard’s Theorem does not hold in full generality, note that we have also
the following theorem:

Theorem 2.8 ([2]). Every continuous map f : X → Rn from a Hilbert manifold
can be arbitrary closely approximated by a smooth map g : X → Rn that has no
critical points.

3. Examples

Example 3.1. Any open subset U of a separable Hilbert space H is a Hilbert mani-
fold with a single global chart given by the inclusion into H. Up to diffeomorphisms,
every Hilbert manifold is of this form by [12].

Example 3.2. The unit sphere in a separable Hilbert space is a smooth Hilbert
manifold.

Example 3.3. Mapping spaces between manifolds can often be viewed as Hilbert
manifolds if one considers only maps of suitable Sobolev class. Set Hr = W 2,n

to be the Sobolev class of L2-functions which are k-fold weakly differentiable in
L2. Let now M be an n-dimensional compact smooth manifold, N be an arbitrary
smooth finite-dimensional or Hilbert manifold and Map(M,N) be the space of con-
tinuous maps with the compact-open topology. Then the subspace Sob(M,N) ⊂
Map(M,N) of functions of Sobolev type Hr for r > n/2 can be given the structure
of a smooth Hilbert manifold ([11, 6(D)]). This inclusion is a homotopy equivalence
([11, 6(E)]). In particular, Sob(M,N) is diffeomorphic to any other Hilbert manifold
homotopy equivalent to Map(M,N) and therefore its diffeomorphism type depends
only on the homotopy type of M and N . Hilbert manifold models for mapping
spaces (in particular, free loop spaces) have been used, for example, in the study of
closed geodesics ([14], [13]), string topology ([8], [18]) and fluid dynamics ([9]).
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