
Bulletin of the Manifold Atlas - definition (2013)

Contact manifold - definition*

HANSJÖRG GEIGES

1. Definition

Let M be a differential manifold, TM its tangent bundle, and ξ ⊂ TM a field
of hyperplanes on M , that is, a smooth sub-bundle of codimension 1. Here the
terms ‘differential’ and ‘smooth’ are used synonymously with C∞. Locally, ξ can be
written as the kernel of a non-vanishing differential 1-form α. A 1-form α defined
globally on M with ξ = kerα can be found if and only if ξ is coorientable, which is
equivalent to saying that the quotient line bundle TM/ξ is trivial. The 1-form α is
determined by ξ up to multiplication by a smooth function f : M → R∗ or, if the
coorientation of ξ has been fixed, by a function taking positive real values only. An
equation of the form α = 0, with α a non-vanishing 1-form, is classically referred to
as a Pfaffian equation.
Definition 1.1. Let M be a smooth manifold of odd dimension 2n+ 1. A contact
structure on M is a hyperplane field ξ ⊂ TM whose (locally) defining 1-form α has
the property that the (2n + 1)-form α ∧ (dα)n is nowhere zero, i.e. a volume form,
on its domain of definition.

Observe that the condition α∧(dα)n 6= 0 is indeed a property of ξ and independent
of the choice of defining 1-form α, since

(fα) ∧ d(fα)n = fn+1α ∧ (dα)n.
Definition 1.2. A pair (M, ξ) consisting of an odd-dimensional manifold M and a
contact structure ξ on M is called a contact manifold.
Definition 1.3. A 1-form as in Definition 1.1, defined globally on M , is called a
contact form on M .

Occasionally the terminology strict contact manifold is used to denote a pair
(M,α) consisting of an odd-dimensional manifold and a contact form on it.

2. Examples

2.1. The standard contact structure on R2n+1. On R2n+1 with Cartesian coor-
dinates

(x1, y1, . . . , xn, yn, z),
the 1-form

α1 := dz +
n∑
j=1

xj dyj

is a contact form. The contact structure ξ1 = kerα1 is called the standard contact
structure on R2n+1. See Figure 1 for the 3-dimensional case.
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Figure 1. The contact structure ker(dz + x dy).

The theorem of Darboux states that locally any contact structure looks like the
standard one, cf. [4, Theorem 2.5.1].

Theorem 2.1 (Darboux). Let α be a contact form on the (2n + 1)-dimensional
manifold M and p a point in M . Then there are coordinates x1, . . . , xn, y1, . . . , yn, z
on a neighbourhood U ⊂M of p such that p = (0, . . . , 0) and

α|U = dz +
n∑
j=1

xj dyj.

A more symmetric form of the standard contact structure on R2n+1 is given by
the contact form

α2 := dz +
n∑
j=1

(xj dyj − yj dxj).

The contact structure ξ2 := kerα2 is equivalent to ξ1 in the following sense.

Definition 2.2. Two contact manifolds (M, ξ), (M ′, ξ′) are said to be contac-
tomorphic if there is a diffeomorphism φ : M → M ′ with Tφ(ξ) = ξ′, where
Tφ : TM → TM ′ denotes the differential of φ. If α, α′ are contact forms defin-
ing the contact structures ξ, ξ′, respectively, this is equivalent to saying that α and
φ∗α′ determine the same hyperplane field, and hence equivalent to the existence of
a nowhere zero function f : M → R∗ such that φ∗α′ = fα.

Usually one deals with contact structures that are cooriented, in which case a
contactomorphism is understood to preserve the coorientation. In our examples, one
can even find a contactomorphism φ where the function f is constant equal to 1. This
is called a strict contactomorphism of the corresponding strict contact manifolds. In
the example, the strict contactomorphism φ : (R2n+1, α1)→ (R2n+1, α2) is given by

φ(x,y, z) =
(
(x + y)/2, (y− x)/2, z + xy/2

)
,

where x and y stand for (x1, . . . , xn) and (y1, . . . , yn), respectively, and xy stands
for ∑j xjyj.
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2.2. The standard contact structure on S2n+1. Let (x1, y1, . . . , xn+1, yn+1) be
Cartesian coordinates on R2n+2. Then the standard contact structure ξ0 on the unit
sphere S2n+1 in R2n+2 is given by the contact form

α0 :=
n+1∑
j=1

(xj dyj − yj dxj).

Write r for the radial coordinate on R2n+2, that is, r2 = ∑
j(x2

j + y2
j ). One checks

easily that r dr ∧ α0 ∧ (dα0)n 6= 0 for r 6= 0. Since S2n+1 is a level set of r (or r2),
this verifies the contact condition. Alternatively, one may regard S2n+1 as the unit
sphere in Cn+1. Then the contact structure ξ0 may be viewed as the hyperplane
field of complex tangencies. Indeed, write J for the complex structure on Cn+1

corresponding to the complex coordinates zj = xj + iyj, that is, J(∂xj
) = ∂yj

. Then

(1) ξ0 = TS2n+1 ∩ J(TS2n+1),
which means that ξ0 defines at each point p ∈ S2n+1 the J-invariant subspace of
TpS

2n+1. Equation (1) follows from the observation that α0 = −r dr ◦ J .
Here is a further example of contactomorphic manifolds.

Proposition 2.3. For any point p ∈ S2n+1, the contact manifolds (S2n+1 \ {p}, ξ0)
and (R2n+1, ξ2) are contactomorphic.

This is slightly less obvious than it may seem, since stereographic projection does
not quite do the job. For a proof of this proposition, due to Erlandsson, see [4,
Proposition 2.1.8].

2.3. The space of contact elements. Let B be a smooth n-dimensional manifold.
A contact element is a hyperplane in a tangent space to B. The space of contact
elements of B is the collection of pairs (b, V ) consisting of a point b ∈ B and a contact
element V ⊂ TbB. This space of contact elements can be naturally identified with
the projectivised cotangent bundle PT ∗B, by associating with a hyperplane V ⊂ TbB
the linear map uV : TbB → R, well defined up to multiplication by a non-zero scalar,
with keruV = V . The space PT ∗B is a manifold of dimension 2n− 1, and it carries
a natural contact structure as defined in the following proposition.

Proposition 2.4. Write π for the bundle projection PT ∗B → B. For u = uV ∈
PT ∗b B, let ξu be the hyperplane in Tu(PT ∗B) such that Tπ(ξu) is the hyperplane V
in Tπ(u)B = TbB defined by u. Then ξ defines a contact structure on PT ∗B.

Figure 2 illustrates the construction for B = R2. Here PT ∗B = R2 × RP1.

Proof of Proposition 2.4. Let q1, . . . , qn be local coordinates on B, and p1, . . . , pn
the corresponding dual coordinates in the fibres of the cotangent bundle T ∗B. This
means that the coordinate description of covectors is given by

(q1, . . . , qn, p1, . . . , pn) =
( n∑
j=1

pj dqj

)
(q1,...,qn)

.

Thus, a point
(q1, . . . , qn, (p1 : . . . : pn))
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Figure 2. The space of contact elements.

in the projectivised cotangent bundle PT ∗B defines the hyperplane
n∑
j=1

pj dqj = 0

in TbB, where b = (q1, . . . , qn). By construction, the natural contact structure ξ on
PT ∗B is defined by

(2) ξ = ker
( n∑
j=1

pj dqj

)
;

notice that this kernel is indeed well defined in terms of the coordinates on PT ∗B,
although the 1-form ∑

pj dqj is not. In order to verify the contact condition for ξ,
we restrict to affine subspaces of the fibre. Over the open set {p1 6= 0}, for instance,
ξ is defined in terms of affine coordinates p′j = pj/p1, j = 2, . . . , n, by the equation

dq1 + p′2 dq2 + · · ·+ p′n dqn = 0,
which is exactly the description of the standard contact structure on R2n−1. �

2.4. A non-coorientable contact structure. In the previous example, we now
specialise to B = Rn. Then the space of contact elements is PT ∗B = Rn × RPn−1.
In terms of Cartesian coordinates (q1, . . . , qn) on Rn and homogeneous coordinates
(p1 : . . . : pn) on RPn−1, the natural contact structure on this space of contact
elements is now defined globally by equation (2). For n = 2, and identifying RP1

with R/πZ with coordinate θ, this natural contact structure can be written as
(3) ker(sin θ dx− cos θ dy).
This is an example of a contact structure that is not coorientable. It lifts to a
coorientable contact structure on R2 × S1, given by the same equation, with S1 :=
R/2πZ. Similar orientability issues arise for general n. Write M := PT ∗Rn =
Rn×RPn−1 and ξ for the natural contact structure on this space of contact elements.
We claim the following:

(i) If n is even, then M is orientable; ξ is neither orientable nor coorientable.

Bulletin of the Manifold Atlas - defintion 2013



Contact manifold - definition 5

(ii) If n is odd, thenM is not orientable; ξ is not coorientable, but it is orientable.
The statement about orientability ofM follows from the corresponding statement

for RPn−1. The fact that ξ is never coorientable follows from the observation that
TM/ξ can be identified with the canonical line bundle on RPn−1 (pulled back to
M), which is known to be non-trivial, see [4, Proposition 2.1.13]. In case (i), since
M is orientable but ξ not coorientable, it follows that ξ cannot be orientable. The
fact that in case (ii) the contact structure is orientable is the consequence of a more
general statement in the next section.

2.5. More orientability issues. Notice that a contact manifold with a coori-
entable contact structure is always orientable (and so is the contact structure),
because a globally defined contact form gives rise to a volume form on the manifold.
This gives a quicker way to see that in our previous example for n odd the contact
structure ξ cannot be coorientable. But even for contact structures that need not
be coorientable one has the following:

(i) Any contact manifold of dimension 4n− 1 is naturally oriented.
(i) Any contact structure on a manifold of dimension 4n+1 is naturally oriented.

Statement (i) follows from the observation that the sign of the volume form α ∧
(dα)2n−1 does not depend on the choice of (local) 1-form α defining the contact
structure. Similarly, in case (ii) the sign of (dα)2n|ξ does not depend on the choice
of α.

2.6. Three-dimensional contact manifolds. One can easily write down exam-
ples of contact structures on some closed 3-manifolds. The 3-sphere is dealt with in
Section 2.2. The contact structure from equation (3) in Section 2.4 descends to a
contact structure on the 3-torus T 3 = R3/(2πZ)3. On S1 × S2 ⊂ S1 × R3 one has
the contact structure ker(z dθ + x dy − y dx). Notice that by the previous section
a 3-dimensional contact manifold is necessarily orientable. In fact, as shown by
Martinet [9], this is the only restriction.

Theorem 2.5 (Martinet). Every closed, orientable 3-manifold admits a contact
structure.

2.7. Brieskorn manifolds. Let a = (a0, . . . , an) be an (n + 1)-tupel of integers
aj > 1, and set

V (a) := {z := (z0, . . . , zn) ∈ Cn+1 : f(z) := za0
0 + · · ·+ zan

n = 0}.

Further, with S2n+1 denoting the unit sphere in Cn+1, we define

Σ(a) := V (a) ∩ S2n+1.

This turns out to be a smooth manifold of dimension 2n− 1. Manifolds of this form
are called Brieskorn manifolds [2]. It can be shown that the standard contact form
on S2n+1 induces a contact structure on Σ(a). This has been observed independently
by Abe–Erbacher, Lutz–Meckert and Sasaki–Hsü, cf. [4, Section 7.1].
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3. A brief history of the terminology

The concept of a contact element first appeared in systematic form in 1896 in the
work of Sophus Lie [7]. His terminology was a little more specific, for instance, a
contact element of the plane was called a line element (Linienelement). A contact
transformation (Berührungstransformation) for Lie was defined as above, but he
only considered this in the context of spaces of contact elements and their natural
contact structure (which did not yet bear that name). Such contact transformations
play a significant role in the work of E. Cartan, E. Goursat, H. Poincaré and others
in the second half of the 19th century. For instance, the Legendre transformation in
classical mechanics is a contact transformation. The study of contact manifolds in
the modern sense can be traced back to the work of Georges Reeb [10], who referred
to a strict contact manifold (M,α) as a ‘système dynamique avec invariant intégral
de Monsieur Elie Cartan’. The relation with dynamical systems comes from the fact
that a contact form α gives rise to a vector field R defined uniquely by the equations

dα(R, . ) ≡ 0 and α(R) ≡ 1.

This vector field is nowadays called the Reeb vector field of α. The words ‘contact
structure’ and ‘contact manifold’ seem to make their first appearance in the work of
Boothby-Wang [1], Gray [5] and Kobayashi [6] in the late 1950s. For more historical
information on contact manifolds see [8] and [3].
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