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Orientation of manifolds - definition*

MATTHIAS KRECK

1. Zero dimensional manifolds

For zero dimensional manifolds an orientation is a map from the manifold to
±1, i.e. an orientation is a map ε : M → {±1}. From now on we assume that
all manifolds have positive dimension. Unless otherwise stated the manifolds have
empty boundary.

2. Orientation of topological manifolds

An orientation of a topological manifold is a choice of a maximal atlas, such that
the coordinate changes are orientation preserving. To make this precise we have to
define when a homeomorphism from an open subset U of Rn to another open subset
V is orientation preserving. We do this in terms of singular homology groups.

Definition 2.1. A homeomorphism f from an open subset V of Rn to another open
subset V ′ is orientation preserving, if for each x ∈ V the map Hn(Rn,Rn − 0;Z) ∼=
Hn(V, V−x;Z) f∗→ Hn(V ′, V ′−f(x);Z) ∼= Hn(Rn,Rn−0;Z) is the identity map. Here
the isomorphismsHn(Rn,Rn−0;Z) ∼= Hn(V, V −x) is the following: We first take the
map to Hn(Rn,Rn−x) (or to Hn(Rn,Rn−x)) induced by the translation mapping 0
to x resp. f(x) and then the inverse of the excision isomorphism. The isomorphism
Hn(V ′, V ′ − f(x);Z) ∼= Hn(Rn,Rn − 0;Z) is the inverse of the corresponding map.

Definition 2.2. An orientation of an n-dimensional topological manifold M
is the choice of a maximal oriented atlas. Here an atlas {(Ui, ϕi : Ui → Vi ⊂ Rn)}
is called oriented if all coordinate changes ϕiϕ

−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) are

orientation preserving. An oriented atlas is called maximal if it cannot be enlarged
to an oriented atlas by adding another chart.

Note that any oriented atlas defines a maximal oriented atlas by adding all charts
such that the atlas is still oriented. This is normally the way an oriented atlas is
given.

A topological manifold M is called orientable if it has a topological orientation,
otherwise it is called non-orientable.

A topological manifold M together with a topological orientation is called an
oriented topological manifold.

An open subset of an oriented topological manifold is oriented by restring the
charts in the maximal oriented atlas to the intersection with the open subset. A
homeomorphism f : N →M between oriented topological manifolds is orientation
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preserving if for each chart ϕ : U → V ⊂ Rn in the oriented atlas of N the chart
ϕf is in the oriented atlas of M .

There are several equivalent formulations of orientations both for topological man-
ifolds and for smooth manifolds which we will explain in the following sections.

3. Reformulation in terms of local homological orientations

An orientation of an n-dimensional topological manifold M can also be defined
in terms of the local homology groups Hn(M,M − x;Z) for each x in M . Recall
that there is an isomorphism Hn(M,M − x;Z) ∼= Z [3, 22.1].

Definition 3.1. A local homological orientation of an n-dimensional topo-
logical manifold M is the choice of a generator [M ]x of the local homology group
Hn(M,M − x;Z) for each x ∈ M . Such a choice is called continuous, if for each
x ∈ M there is an open neighborhood U and a class α ∈ Hn(M,M − U ;Z) such
that the map induced by the inclusion (M,M − U)→ (M,M − x) maps α to [M ]x
for each x ∈ U . A homological orientation of M is a continuous choice of local
homological orientations.

As above an open subset U of M has an induced homological orientation which
is given by the image under the inverse of the isomorphism induced by the inclusion
Hn(U,U − x;Z)→ Hn(M,M − x;Z).

To get an example consider a finite dimensional oriented real vector space V ,
i.e. V is equipped with an equivalence class of bases v1, ..., vn, where two bases are
called equivalent, if and only if the matrix of the base change matrix has positive
determinant. The orientation of V as a vector space gives a homological orientation
of V as a topological space as follows. We first orient at 0 in V by considering the
simplex spanned by −∑

i=1,...,n vi, v1, v2, ..., vn. This contains 0 in its interior and
is a generator of Hn(V, V − 0;Z). By translations we define local orientations at
arbitrary points of V mapping the local orientation at 0 to the local orientation
at x by the map induced by the translation mapping 0 to x. By construction this
is a continuous family of local homological orientations and so gives a homological
orientation of V . From this we obtain homological orientations of all open subsets
of V .

The equivalence of these two concepts of an orientation of a topological
manifold is shown as follows. A homeomorphism between manifolds equipped with
a continuous family of local orientations is called orientation preserving if the
induced map maps the corresponding local orientations to each other. We note that
if both manifolds are open subsets of Rn, this definition of orientation preserving
homeomorphisms agrees with the one defined above. With this one defines for
a topological manifold with a continuous family of local orientations a maximal
oriented atlas by all charts which are orientation preserving, where we orient Rn as
above. In turn if one has a maximal oriented atlas one uses it to transport the local
orientations of open subsets of Rn to local homological orientations of M , which are
a continuous family, since the atlas is oriented.
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4. Orientation of smooth manifolds

The definition of an orientation for a topological manifold needs homology groups.
For smooth manifolds the definition can be simplified. To distinguish the very similar
definition we call it a smooth orientation.

Definition 4.1. A smooth orientation of an n-dimensional smooth manifold
M is the choice of a maximal smooth oriented atlas. A smooth atlas

{(Ui, ϕi : Ui → Vi ⊂ Rn)}
is called oriented if the determinant of the derivatives of all coordinate changes
ϕiϕ

−1
j : ϕj(Ui ∩ Uj) → ϕi(Ui ∩ Uj) is positive. A smooth oriented atlas is called

maximal if it cannot be enlarged to a smooth oriented atlas by adding another
smooth chart. Note that any smooth oriented atlas defines a maximal smooth
oriented atlas by adding all smooth charts such that the atlas is still oriented. This
is normally the way a smooth oriented atlas is given.

A smooth manifold M is called orientable if it has a smooth orientation, other-
wise it is called non-orientable.

A smooth manifold M together with a smooth orientation is called an oriented
smooth manifold.

5. From smooth orientation to homological orientation

For smooth manifolds we have now two definitions of an orientation, the smooth
orientation and the orientation as a topological manifold. Here we explain why they
are again equivalent concepts. The key observation is the following. If we have an
orientation of the vector space Rn we have defined corresponding local orientations.
If we change the orientation of the vector space Rn, the local homological orientation
changes its sign. Since there are two orientations of Rn as a vector space and two
generators of Hn(Rn,Rn − 0;Z) this correspondence is a bijection.

The next observation is that if we have a diffeomorphism from an open subset V
in Rn to another open subset V ′ in Rn, then its differential preserves the standard
orientation of Rn if and only if it preserves the corresponding local homological
orientations and so the underlying homeomorphism is orientation preserving in the
sense defined in the beginning of the last section.

Thus, ifM is smoothly oriented, i.e. is equipped with a maximal oriented smooth
atlas, then - forgetting the smooth structure - we obtain an oriented topological
atlas and we define the corresponding topological orientation by passing to the
maximal oriented topological atlas containing these charts. In turn, if one has a
maximal oriented topological atlas the subset of smooth charts in it defines a smooth
orientation.

6. Reformulations of orientation for smooth manifolds

There are several equivalent formulations for orientations of smooth manifolds.

Definition 6.1. A tangential orientation of M is a continuous choice of an
orientation of the tangent space TxM in the sense of orientations of vector spaces
for every point x ∈M . Here continuous means that for every x ∈M there is a chart
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ϕ : U → V ⊂ Rn around x, such that the differential of ϕ maps for all y ∈ U the
orientation at TyM to the same orientation of Tϕ(y)V = Rn.

The relationship between Definition 6.1 and Definition 4.1 is the following. If
{(Ui, ϕi : Ui → Vi ⊂ Rn)} is an oriented atlas, we define an orientation of TxM by
choosing an oriented chart ϕ : U → V ⊂ Rn around x and define the tangential
orientation as the image of the orientation of Rn = Tϕ(x)Rn under the differential of
ϕ−1. In turn, if a continuous orientation of TxM for all x ∈M is given, one defines
a maximal oriented atlas as the atlas consisting of all charts ϕ : U → V ⊂ Rn such
that all differentials are orientation preserving, where we equip V with the induced
orientation from Rn equipped with the standard orientation given by the canonical
basis. It is easy to check that these constructions are well defined and give equivalent
formulations.
Further equivalent formulations, which need a bit more knowledge of vector

bundles are:
- An orientation of a smooth n-dimensional manifoldM is given by the reduction

of the structure group GLn(Rn) of the tangent bundle TM to GLn(Rn)+, the
subgroup of matrices with determinant > 0. That this is an equivalence is an easy
exercise.

- An orientation of a smooth manifold is given by a trivialization (an isomor-
phism to the trivial bundle) of the exterior bundle ΛnTM . That this is an equiva-
lence is an easy exercise.
Remark 6.2. Since the different concepts of orientations are all equivalent, one
normally speaks of an oriented manifold in all cases. We only used the adjectives to
make clear that a priory the definitions are different.

7. Criteria for orientability

There are various criteria for orientability:
Theorem 7.1. A smooth n-dimensional manifold is orientable if and only if the
tangent bundle (or the normal bundle of an embedding into Rk) has a Thom class,
i.e. a class U ∈ Hn(TM, TM − 0;Z), whose restriction to each fibre TMx is a
generator of Hn(TMx, TMx−0;Z). Moreover the choice of a Thom class determines
an orientation and vice versa.
Proof. The class U orients each fibre TMx and hence defines an orientation of TM
as in Definition 2.2. The converse if proven in, for example, [4, Theorem 10.4] and
[1, Theorem 11.3]. �

Theorem 7.2. A smooth manifold M is orientable if and only if the first Stiefel
Whitney class of its tangent bundle vanishes. See [4, Lemma 11.6 and Problem
12-A] and [1, Proposition 17.2].
Theorem 7.3 ([2, VIII Corollary 3.4]). A connected closed n-dimensional manifolds
M is orientable if and only if Hn(M ;Z) is non-zero, in which case it is isomorphic to
Z. The choice of a generator is called a fundamental class [M ] ∈ Hn(M ;Z). The
choice of a generator corresponds to the choice of an orientation [2, VIII Definition
4.1]. For a not necessarily connected compact oriented manifold M the components

Bulletin of the Manifold Atlas - defintion 2013



Orientation of manifolds - definition 5

are oriented and the sum of the fundamental classes of the components define the
fundamental class of M .

There is a generalization of Theorem 7.3 to non-compact manifolds.
Theorem 7.4 ([3, Corollary 22.26]). If M is arbitrary, then M is orientable if
and only if for each compact connected subset K ⊂ M there is a class [M ]K ∈
Hn(M,M −K;Z), such that for each x ∈ K the map induced by the inclusion maps
[M ]K to a generator of Hn(M,M−x;Z) and the classes mapped to each other under
the maps induced by the inclusion Hn(M,M −K;Z) → Hn(M,M −K ′;Z) for all
K ′ ⊂ K. The images of the classes [M ]K in Hn(M,M − x;Z) define a homological
orientation ofM and in turn a homological orientation determines the classes [M ]K.

8. Manifolds with boundary

For manifolds W with boundary an orientation is defined as an orientation of its
interior. An orientation of W induces an orientation on the boundary ∂W . If W
is 1-dimensional, we orient the boundary, which is 0-dimensional by attaching to
x ∈ ∂W the local orientation ε(x) = −1, if the restriction of a chart around x from
U to V ⊂ R>0 to the interior is in the oriented atlas of the interior of W . Otherwise
we define ε(x) = +1. For example it we orient the interval [0, 1] by the atlas of the
interior given by the identity map, then ε(0) = −1 and and ε(1) = 1.

If the dimension of W is positive, we define the induced orientation both for
smooth or topological manifolds in terms of an induced maximal oriented atlas of
the boundary. If ϕ : U → V ⊂ Rn

+ = {x ∈ Rn|x1 ≥ 0} is a (smooth) chart around
a boundary point x ∈ ∂W , such that its restriction to the inner is in the oriented
atlas of the inner ofW , then the restriction of this chart to U ∩∂W is a chart of ∂W
and these charts form a maximal oriented (smooth) atlas of −∂W . The orientation
given by this atlas is called the induced orientation on ∂W .

The convention, that we consider the negative orientation on the boundary is for
smooth manifolds equivalent to choosing an identification of the restriction of the
tangent bundle ofW to ∂W with R⊕T∂W , where we identify R with a subbundle by
selecting the outward normal vector field”. With other words for smooth manifolds
the induced orientation is characterized as the orientation of Tx∂W , such that any
outward pointing normal vector plus this orientation is the given orientation of W .

As for compact manifolds W without boundary one can see that a compact con-
nected manifold with boundary is orientable if and only ifHn(W ; ∂W ;Z) is non-zero,
in which case it is again isomorphic to Z, [2]. The choice of a generator is called a
relative fundamental class and again this fixes an orientation of W .

Our at the first glance slightly ad libitum looking convention is made in such a
way that the following holds:
Theorem 8.1. LetW be a compact oriented n-dimensional manifold with boundary.
If [W,∂W ] ∈ Hn(W,∂W ;Z) is the fundamental class compatible with the orientation,
then ∂([W,∂W ]) ∈ Hn−1(∂W ;Z) is the the fundamental class compatible with the
induced orientation of the boundary as defined above.

Since the proof of this result is not in standard text books (to my knowledge), we
give it here.
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Proof. The case of 1-dimensional manifolds is easy. Thus we assume that W has
dimension > 1. Since the orientation is given locally (we use the homological formu-
lation) it is enough to show that if we consider the local orientation of W in a chart
near the boundary, the boundary operator maps it to the local orientation of ∂W
in the restriction of this chart to the boundary. Here we choose the chart in such
a way, that the orientation of W corresponds to the standard orientation of Hn (if
not change your atlas by a reflection in Hn).

Thus we consider Hn = {x ∈ Rn|x1 ≥ 0} and the local orientation given by
the standard basis of Rn. Since we work with the half space we map the simplex
constructed by the standard basis with edges −∑

i=1,...,n ei, e1, e2, ..., en, so that it is
spanned instead by e0 := −∑

i=2,...,n ei, e1, ..., en. We denote this simplex by ∆. The
class represented by this simplex in Hn(Hn, Hn − y;Z) for some y in the inner of
the simplex is the same as that of Rn given by the standard orientation of Rn. If we
begin with the fundamental class [W,∂W ], consider its image under the boundary
operator in Hn−1(∂W ;Z) and pass to the local orientation at 0 ∈ {0} × Rn−1, then
it is represented by the restriction of d(∆) to the boundary of Hn. More precisely
d(∆) = ∑

i=0...,n(−1)i(< e0, ...ei−1, ei+1, ..., en >, where < ... > corresponds to the
simplex spanned by the corresponding vectors, and the local orientation in ∂H at
0 corresponding to the image of the fundamental class in Hn−1(∂W ;Z) is given by
(−1)1 < e0, e2, ..., en >= − < e0, ..., en >. But this is the negative of the local
orientation of ∂Hn = Rn−1 given by the standard basis. This finishes the proof and
explains why we took the negative orientation in our construction of the induced
orientation in terms of an atlas. �

9. Orientation of products

Given two oriented manifolds there is an obvious way to orient their product
by choosing the product atlas. If M is smooth and we have given orientations as
tangential orientations, we note that T(x,y)(M ×N) is isomorphic to Tx(M)⊕Ty(N)
and the isomorphism is induced by the differential of the projections and then the
product orientation is given by the juxtaposition of the orientations of Tx(M) and
Ty(N).

Similarly if Mm and Nn are oriented by a continuos family of local homologi-
cal orientations, we note that Hm+n(M × N,M × N − (x, y);Z) is isomorphic to
Hm(M,M − x;Z) ⊗Hn(N,N − y;Z), this isomorphism from the latter to the first
is given by the cross product

Hn(M,M−x;Z)⊗Hn(N,N−y;Z) −→
Hm+n(M×N, (M×(N−y))∪((M−x)×N ;Z)) = Hm+n(M×N,M×N−(x, y);Z).

By definition of the cross product of the local homological orientation given by the
standard basis of Rm with the local homological orientation given by the standard
basis of Rn is the local homological orientation given by the standard basis of Rm+n.
Thus the different concepts of product orientations given by the product of an atlas
and by the product of local homological orientations agree also.
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As a consequence for compact oriented manifolds equipped with fundamental
classes the cross product of the fundamental classes corresponds to the product of
the orientations induced by the fundamental classes.

10. Orientation of complex manifolds

An n-dimensional complex manifold is a topological manifold together with
an atlas (Ui, ϕi : Ui → Vi ⊂ Cn) such that the coordinate changes are holomorphic
maps. Given such an atlas the charts considered as maps to R2n have orientation
preserving coordinate changes, since a complex matrix considered as a real matrix
has determinant > 0, the square of the norm of the complex determinant. Thus a
complex manifold considered as a real manifold has this way a canonical orientation.
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