Immersion - definition*

ULRICH KOSCHORKE

1. Definition

We work in a fixed category CAT of topological, piecewise linear, C^{r}-differentiable $(1 \leq r \leq \infty)$ or real analytic manifolds (second countable, Hausdorff, without boundary) and maps between them. \dot{B}^{k} denotes the open unit ball in $\mathbb{R}^{k}, k=$ $0,1, \ldots$.

Let $f: M^{m} \rightarrow N^{n}$ be such a map between manifolds of the indicated dimensions $m \leq n$.

Definition 1.1. f is a local immersion at a point $x \in M$ if there exist open neighbourhoods U of x and V of $f(x)$ in M and N, resp., such that $f(U) \subset V$ and:
(1) there is a CAT-isomorphism $h: V \rightarrow \stackrel{\circ}{B}^{n}$ (i.e. both h and h^{-1} are CAT-maps) which maps $f(U)$ onto $\dot{B}^{n} \cap\left(\mathbb{R}^{m} \times\{0\}\right)=\stackrel{\circ}{B}^{m}$; and
(2) $h \circ f$ yields a CAT-isomorphism from U onto $\stackrel{\circ}{B}^{m}$.

We call f an immersion (and we write $f: M \leftrightarrow N$) if f is a local immersion at every point $x \in M$.

Thus an immersion looks locally like the inclusion $\mathbb{R}^{m} \subset \mathbb{R}^{n}$ of Euclidean spaces. It allows us to visualize a given manifold M in a possibly more familar setting such as $N=\mathbb{R}^{n}$. E.g. the projective plane $\mathbb{R P}^{2}$ can be visualized in \mathbb{R}^{3} with the help of the Boy's surface, the image of a C^{∞}-immersion: see for example the page on surfaces. The following two questions play an important role.
(1) Existence: Given M and N, is there any immersion $M \leftrightarrow N$ at all?
(2) Classification: How many essentially different immersions exist?

2. The smooth case

This section is about the category of smooth, i.e. C^{∞}, manifolds and maps. It follows from the inverse function theorem that a smooth map $f: M \rightarrow N$ between smooth manifolds is a local immersion at $x \in M$ precisely if the tangent map $(T f)_{x}: T_{x} M \rightarrow T_{f(x)}(N)$ is injective. Thus f is a smooth immersion if and only if it induces a vector bundle monomorphism $T f: T M \rightarrow T N$. E.g. the figure \odot cannot be the image of a smooth immersion, due to the two sharp corners which don't allow a well-defined tangent line. However there exists a smooth immersion $f: S^{1} \leftrightarrow \mathbb{R}^{2}$ with image the figure ∞.

[^0]Theorem 2.1. [4, Remark], [7], Phillips 1967 If (i) $m<n$, or if (ii) M is open and $m=n$, then the map

$$
\begin{equation*}
T: \operatorname{Imm}(M, N) \rightarrow \operatorname{Mono}(T M, T N), \quad f \rightarrow T f \tag{2}
\end{equation*}
$$

is a weak homotopy equivalence. Here the space, $\operatorname{Imm}(M, N)$, of all smooth immersions $f: M \leftrightarrow N$ and $\operatorname{Mono}(T M, T N)$, the space of all vector bundle monomorphisms $\varphi: T M \rightarrow T N$, are endowed respectively with the C^{∞}-topology and the compact-open topology.

Remark 2.3. For a good exposition of Theorem 2.1 see [1, pp. 87 and 93].
Corollary 2.4. Under the assumptions of theorem 2.1 there exists an immersion $f: M \leftrightarrow N$ if and only if there is a vector bundle monomorphism from the tangent bundle $T M$ of M to $T N$. E. g. if M is parallelizable (i. e. $T M \cong M \times \mathbb{R}^{m}$) then $M \rightarrow \mathbb{R}^{m+1}$.

Theorem 2.5. [10, Remark] If $m \geq 2$ then there exists an immersion $M^{m} \rightarrow \mathbb{R}^{2 m-1}$ (E. g. any surface can be immersed into \mathbb{R}^{3}).

Remark 2.6. See also e.g. [1, p. 86ff].
Theorem 2.5 is best possible as long as we put no restrictions on M.
Example 2.7. The real projective space $\mathbb{R P}^{m}$ cannot be immersed into $\mathbb{R}^{2 m-2}$ if $m=2^{k}$. This follows from an easy calculation using Stiefel-Whitney classes: see, [6, Theorem 4,8].

Definition 2.8. Two immersions $f, g: M \leftrightarrow N$ are regularly homotopic if there exists a smooth map $F: M \times I \rightarrow N$ which with $f_{t}(x):=F(x, t)$ satisfies the following:
(1) $f_{0}=f, \quad f_{1}=g$;
(2) f_{t} is a immersion for all $t \in I$.

Corollary 2.9. Assume $m<n$. Two immersions $f, g: M \leftrightarrow N$ are regularly homotopic if and only if their tangent maps $T f, T g: T M \rightarrow T N$ are homotopic through vector bundle monomorphisms.

Example $2.10\left(M=S^{m}, N=\mathbb{R}^{n}\right.$, [7]). The regular homotopy classes of immersions $f: S^{m} \rightarrow \mathbb{R}^{n}, m<n$, are in one-to-one correspondance with the elements of the homotopy group $\pi_{m}\left(V_{n, m}\right)$, where $V_{n, m}$ is the Stiefel manifold of m-frames in \mathbb{R}^{n}. In particular, all immersions $S^{2} \leftrightarrow \mathbb{R}^{3}$ are regularly homotopic (since $\pi_{2}\left(V_{3,2}\right)=0$). E. g. the standard inclusion $f_{0}: S^{2} \subset \mathbb{R}^{3}$ is regularly homotopic to $-f_{0}$; i. e. you can 'turn the sphere inside out' in \mathbb{R}^{3}, with possible self-intersections but without creating any crease.

Remark 2.11. The Smale-Hirsch theorem makes existence and classification problems accessible to standard methods of algebraic topology such as classical obstruction theorem (cf. e.g. [9]), characteristic classes (cf. e.g. [6]), Postnikov towers, the singularity method (cf. e.g. [5]) etc.: see [8] for the state of the art in 1963.

3. Self intersections

It is a characteristic feature of immersions - as compared to embeddings - that r-tuple selfintersections may occur for some $r \geq 2$, i. e. points in N which are the image of at least r distinct elements of M (e. g. the double point in the figure 8 immersion $f: S^{1} \rightarrow \mathbb{R}^{2}$ with image ∞). Generically the locus of r-tuple points of a smooth immersion $f: M^{m} \rightarrow N^{n}$ is an immersed $(n-r(n-m)$)-dimensional manifold in N. Its properties may yield a variety of interesting invariants which link immersions to other concepts of topology. E. g. let $\theta(f)$ denote the mod 2 number of ($n+1$)-tuple points of a selftransverse immersion $f: M^{n} \rightarrow \mathbb{R}^{n+1}$.

Theorem 3.1. [2] Given a natural number $n \equiv 1(4)$, there is an n-dimensional closed smooth manifold M^{n} and an immersion $f: M^{n} \rightarrow \mathbb{R}^{n+1}$ satisfying $\theta(f)=1$ if and only if there exists a framed $(n+1)$-dimensional manifold with Kervaire invariant 1.

According to [3] (and previous authors) this holds precisely when $n=1,5,13,29,61$ or possibly 125. If $n \neq 1$ and $n=1$ (4) the manifold M in question cannot be orientable (cf. [2]). Thus the figure 8 immersion $f: S^{1} \rightarrow \mathbb{R}^{2}$ plays a rather special role here.

References

[1] M. Adachi, Embeddings and immersions, Translated from the Japanese by KikiHudson. Translations of Mathematical Monographs, 124. Providence, RI:American Mathematical Society (AMS), 1993. MR 1225100 Zbl 0810.57001
[2] P. J. Eccles, Codimension one immersions and the Kervaire invariant one problem, Math. Proc. Cambridge Philos. Soc. 90 (1981), no.3, 483-493. MR 628831 Zbl 0479.57016
[3] M. A. Hill, M. J. Hopkins and D. C. Ravenel, On the non-existence of elements of Kervaire invariant one, (2009). Available at the arXiv:0908.3724.
[4] M. W. Hirsch, Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. MR 0119214 Zbl 0118.18603
[5] U. Koschorke, Vector fields and other vector bundle morphisms-a singularity approach, Springer, 1981. MR 611333 Zbl 0459.57016
[6] J. W. Milnor and J. D. Stasheff, Characteristic classes, Princeton University Press, Princeton, N. J., 1974. MR 0440554 Zbl 1079.57504
[7] S. Smale, The classification of immersions of spheres in Euclidean spaces, Ann. of Math. (2) 69 (1959), 327-344. MR 0105117 Zbl 0089.18201
[8] S. Smale, A survey of some recent developments in differential topology, Bull. Amer. Math. Soc. 69 (1963), 131-145. MR 0144351 Zbl 0133.16507
[9] N. Steenrod, The topology of fibre bundles., (Princeton Mathematical Series No. 14.) Princeton: Princeton University Press. VIII, 224 p. , 1951. MR 1688579 Zbl 0054.07103
[10] H. Whitney, The singularities of a smooth n-manifold in (2n-1)-space, Ann. of Math. (2) 45 (1944), 247-293. MR 0010275 Zbl 0063.08238

Ulrich Koschorke

Department of Mathematics, ENC,
Universität Siegen,
D57068 Siegen, Germany

E-mail address: koschorke@mathematik.uni-siegen.de

[^0]: *Atlas page: www.map.mpim-bonn.mpg.de/Immersion

