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ULRICH KOSCHORKE

1. Definition

We work in a fixed category CAT of topological, piecewise linear, Cr-differentiable
(1 ≤ r ≤ ∞) or real analytic manifolds (second countable, Hausdorff, without
boundary) and maps between them. B̊k denotes the open unit ball in Rk, k =
0, 1, . . . .

Let f : Mm → Nn be such a map between manifolds of the indicated dimensions
m ≤ n.

Definition 1.1. f is a local immersion at a point x ∈M if there exist open neigh-
bourhoods U of x and V of f(x) in M and N , resp., such that f(U) ⊂ V and:

(1) there is a CAT-isomorphism h : V → B̊n (i.e. both h and h−1 are CAT-maps)
which maps f(U) onto B̊n ∩ (Rm × {0}) = B̊m; and

(2) h ◦ f yields a CAT-isomorphism from U onto B̊m.
We call f an immersion (and we write f : M # N) if f is a local immersion at

every point x ∈M .

Thus an immersion looks locally like the inclusion Rm ⊂ Rn of Euclidean spaces.
It allows us to visualize a given manifold M in a possibly more familar setting such
as N = Rn. E.g. the projective plane RP2 can be visualized in R3 with the help
of the Boy’s surface, the image of a C∞-immersion: see for example the page on
surfaces. The following two questions play an important role.

(1) Existence: Given M and N , is there any immersion M # N at all?
(2) Classification: How many essentially different immersions exist?

2. The smooth case

This section is about the category of smooth, i.e. C∞, manifolds and maps. It
follows from the inverse function theorem that a smooth map f : M → N between
smooth manifolds is a local immersion at x ∈ M precisely if the tangent map
(Tf)x : TxM → Tf(x)(N) is injective. Thus f is a smooth immersion if and only
if it induces a vector bundle monomorphism Tf : TM → TN . E.g. the figure ♥
cannot be the image of a smooth immersion, due to the two sharp corners which
don’t allow a well-defined tangent line. However there exists a smooth immersion
f : S1 # R2 with image the figure ∞.
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Theorem 2.1. [4, Remark], [7], Phillips 1967 If (i) m < n, or if (ii) M is open
and m = n, then the map

(2) T : Imm(M,N)→ Mono(TM, TN), f → Tf,

is a weak homotopy equivalence. Here the space, Imm(M,N), of all smooth immer-
sions f : M # N and Mono(TM, TN), the space of all vector bundle monomor-
phisms ϕ : TM → TN , are endowed respectively with the C∞-topology and the
compact-open topology.

Remark 2.3. For a good exposition of Theorem 2.1 see [1, pp.87 and 93].

Corollary 2.4. Under the assumptions of theorem 2.1 there exists an immersion
f : M # N if and only if there is a vector bundle monomorphism from the tangent
bundle TM of M to TN . E. g. if M is parallelizable (i. e. TM ∼= M × Rm) then
M # Rm+1.

Theorem 2.5. [10, Remark] If m ≥ 2 then there exists an immersionMm # R2m−1

(E. g. any surface can be immersed into R3).

Remark 2.6. See also e.g. [1, p. 86ff].

Theorem 2.5 is best possible as long as we put no restrictions on M .

Example 2.7. The real projective space RPm cannot be immersed into R2m−2 if
m = 2k. This follows from an easy calculation using Stiefel-Whitney classes: see, [6,
Theorem 4,8].

Definition 2.8. Two immersions f, g : M # N are regularly homotopic if there
exists a smooth map F : M × I → N which with ft(x) := F (x, t) satisfies the
following:

(1) f0 = f, f1 = g;
(2) ft is a immersion for all t ∈ I.

Corollary 2.9. Assume m < n. Two immersions f, g : M # N are regularly
homotopic if and only if their tangent maps Tf, Tg : TM → TN are homotopic
through vector bundle monomorphisms.

Example 2.10 (M = Sm, N = Rn, [7]). The regular homotopy classes of immer-
sions f : Sm # Rn, m < n, are in one-to-one correspondance with the elements of
the homotopy group πm(Vn,m), where Vn,m is the Stiefel manifold of m-frames in Rn.
In particular, all immersions S2 # R3 are regularly homotopic (since π2(V3,2) = 0).
E. g. the standard inclusion f0 : S2 ⊂ R3 is regularly homotopic to −f0; i. e. you
can ’turn the sphere inside out’ in R3, with possible self-intersections but without
creating any crease.

Remark 2.11. The Smale-Hirsch theorem makes existence and classification prob-
lems accessible to standard methods of algebraic topology such as classical obstruc-
tion theorem (cf. e.g. [9]), characteristic classes (cf. e.g. [6]), Postnikov towers, the
singularity method (cf. e.g. [5]) etc.: see [8] for the state of the art in 1963.
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3. Self intersections

It is a characteristic feature of immersions - as compared to embeddings - that
r-tuple selfintersections may occur for some r ≥ 2, i. e. points in N which are the
image of at least r distinct elements of M (e. g. the double point in the figure 8
immersion f : S1 # R2 with image ∞). Generically the locus of r-tuple points of
a smooth immersion f : Mm # Nn is an immersed (n − r(n − m))-dimensional
manifold in N . Its properties may yield a variety of interesting invariants which link
immersions to other concepts of topology. E. g. let θ(f) denote the mod 2 number
of (n+ 1)-tuple points of a selftransverse immersion f : Mn # Rn+1.

Theorem 3.1. [2] Given a natural number n ≡ 1(4), there is an n-dimensional
closed smooth manifold Mn and an immersion f : Mn # Rn+1 satisfying θ(f) = 1
if and only if there exists a framed (n + 1)-dimensional manifold with Kervaire
invariant 1.

According to [3] (and previous authors) this holds precisely when n = 1, 5, 13, 29, 61
or possibly 125. If n 6= 1 and n = 1(4) the manifold M in question cannot be ori-
entable (cf. [2]). Thus the figure 8 immersion f : S1 # R2 plays a rather special
role here.
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