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Fake lens spaces*®
TIBOR MACKO

ABSTRACT. A fake lens space is an orbit space of a free action of a finite cyclic
group on a sphere and as such it is a generalization of a classical lens space. The
invariants of fake lens spaces described here are their homotopy groups, homology
groups, a certain k-invariant, the Reidemeister torsion, the p-invariant and certain
splitting invariants. We survey the classification of fake lens spaces which includes
the classification up to homotopy, up to simple homotopy and up to homeomor-
phism, employing methods of homotopy theory, algebraic K-theory and surgery
theory. Finally we discuss the join construction which builds fake lens spaces from
other fake lens spaces of a lower dimension.

57R65, 57525

1. INTRODUCTION

A fake lens space is the orbit space of a free action of a finite cyclic group on a
sphere. As such it is a topological manifold. If the action is required to be smooth
then a smooth fake lens space is obtained. On this page mostly topological fake lens
spaces are discussed, since for these the classification is better understood.

Clearly, classical lens spaces, which are orbit spaces of free actions on a sphere
coming from unitary representations of a finite cyclic group, are examples of fake
lens spaces. In order to obtain fake lens spaces which are not homeomorphic to these
classical lens spaces more sophisticated technology is needed. One can either use
surgery theoretic methods, or one can define certain actions of finite cyclic groups
on Brieskorn varieties. See the constructions and examples in Section 7.

The classification of topological fake lens spaces can be seen as one of the basic
questions in the topology of manifolds. It is systematically obtained in three stages:
the homotopy classification using classical homotopy theory, the simple homotopy
classification using Reidemeister torsion, and finally, surgery theory is employed to
obtain a homeomorphism classification within the respective simple homotopy types.
The classification of lens spaces with fundamental groups of order N with N odd
and N = 2, was one of the first spectacular applications of surgery theory (see [3],
[2], and the full classification in this setting in [14, chapters 14D, 14E]).

2. DEFINITION

Definition 2.1. Let G be a finite cyclic group and let o be a free action of G by
homeomorphisms on the sphere S2¢=!. A fake lens space is the orbit space of a
and it is denoted by L?*1(a).
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Recall that the classical lens spaces were denoted by symbols like L(N, 1y, ..., 14),
where N is the order of the group G. For brevity the notation L*~1(a;) =
L(N,k,1,...,1) is sometimes used below. Also, when the dimension and the action
are clear, we sometimes leave them from notation and simply write L.

Note that by the Lefschetz fixed point theorem, only the group of order 2 can act
freely on a sphere S?* of even dimension. For this case see the article on fake real
projective spaces.

3. NOTATION

Throughout this page G will be the finite cyclic group of order N. It will have a
preferred generator T" which allows us to identify

ZG = Z[T) /(TN —1).

The norm element is Z =1+ T + - -- + TV~ Further we denote Rg = ZG/(Z) =
ZIT)/{1 +T + ---+TN"1). The projection map ZG — R fits into the arithmetic
square:

7G 1~ Rg

ZﬁZN
n

where ¢, ¢ are the augmentation maps. The augmentation ideal is the kernel I =
kere.
We will also need the ring QRg = Q ® Rg which we identify as

QRG:Q[T]/<1—|—T_|_...+TN—1>.

The Pontrjagin dual of G, is the group G = Homgz(G, S'). Recall that since G
is a finite cyclic group the representation ring R(G) can be canonically identified
with the group ring ZG. Then we also have QR(G) = Q ® R(G) = QG. Dividing
out the regular representation corresponds to dividing out the norm element, hence
R(G)/(reg) = Rz = ZG/(Z) and QR(G)/(reg) = QRz = QG/(Z). We will also

choose a preferred generator x of G which gives the identifications

QRz = QDJ/(1 4+ x +---+xV7).

Also note that one can vary the group G. Suppose that we have a subgroup
H C G. Then by restricting the action we obtain from a fake lens space associated
with the group G a fake lens space associated with the group H. Similarly we could
start with a fake complex projective space which is an orbit space of a free tame
action of S on S?¢~! and restrict the action to G C S', to obtain a fake lens space
associated with G. Both of these operations are referred to as transfer.

4. INVARIANTS

For L = L*~1(a) we have the following invariants:
o m (L) =Zy, (L) = m(S?1) for i > 2,
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o Hy(L) = Z, Hoy (L) = Z, Hy (L) = Z for 1 <i < d—1, H(L) = 0 for
all other values of i,

e the k-invariant (in the sense of homotopy theory) kyq_1(L) € H*(BG;7Z),

e the Reidemeister torsion A(L) € QRg = Q[T)/(1+T + ---TN~1) and

e the p-invariant p(L) € QRgl)d CQI]/ (T4 x+-- XN,

When N = 25 . M with ged(M,2) = 1, then we have for a manifold structure
h: L — L(ag) representing an element in the surgery structure set S*(L(ay)) the
so-called splitting invariants:

o S4Z‘(h) S ZQK for 4 > 1,
° S4i,2(h) € ZQ fOI' 1 Z 1.

The invariants sy;_»(h) are obtained by passing to the associated manifold struc-
ture on the real projective space RP??~! (alias restricting the action to Zy C G) and
taking the splitting invariant along RP*~2 c RP?-1,

The splitting invariants sy (h) are harder to describe. One way is as follows. It
follows from the calculations of the normal invariants N (L(«)) that for d even the
manifold structure h is normally cobordant to a manifold structure which comes
from a manifold structure on the complex projective space CP4~! by the transfer
(alias restricting the action to G C S'). When d is odd the same is true for the
suspension manifold structure ¥(h), defined in Section 8. The invariant sy;(h) is
then obtained from the splitting invariant along CP* C CP4! which is an integer,
by taking its class modulo 2% when d is even, and from the splitting invariant along
CP?% c CP? which is also an integer, by taking its class modulo 2%, when d is odd.

For the splitting invariants of the manifold structures on complex projective spaces
see the page Fake complex projective spaces

5. SIMPLE HOMOTOPY THEORY

5.1. Preliminaries. The homotopy classification is stated in the a priori broader
context of finite CW-complexes L with m(L) = Zy and with the universal cover
homotopy equivalent to S?¢~! of which fake lens spaces are obviously a special case.
It is convenient to make the following definition.

Definition 5.1. Let L be a CW-complex with m(L) = Zy and with universal
cover homotopy equivalent to S?¢~!. A polarization of L is a pair (T,e) where
T is a choice of a generator of m;(L) and e is a choice of a homotopy equivalence
e: [ — S%-1,

Recall the classical lens space L**1(N;k,1,...,1). By L{(N;k,1,...,1) is de-
noted its ¢-skeleton with respect to the standard cell decomposition. If ¢ is odd this
is a lens space, if 7 is even this is a CW-complex obtained by attaching an i-cell to
the lens space of dimension 7 — 1.

Theorem 5.2. [14, Theorem 14E.3, first part] Let L be a finite CW-complezx with
(L) = Zy and universal cover S**=1 polarized by (T, e). Then there exists a map
¢: S22 — L2=2(N,1,...,1) and a simple homotopy equivalence

h: L — L*72(N;1,...,1) Uge*!
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preserving the polarization, such that the ZG-chain complex differential on the right
hand side is given by Oog 1%t = 22T — 1)U for some U € ZG which maps to
a unit u € Rg. Furthermore, L is a simple Poincare complex and its Reidemeister
torsion is A(L) = (T — 1)% - u. The element u is unique up to powers of T.

5.2. Homotopy classification.

Theorem 5.3. [14, Theorem 14E.3, second part] The polarized homotopy types of
such L are in one-to-one correspondence with the units in Zy. The correspondence
is given by L — €'(u) € Zy. The invariant €'(u) can be identified with the first non-
trivial k-invariant of L (in the sense of homotopy theory) ksq1(L) € H*(BG; 7).

5.3. Simple homotopy classification.

Theorem 5.4. [14, Theorem 14E.3, third part] The polarized simple homotopy types
of such L are in one-to-one correspondence with the equivalence classes of units in
R¢, where the equivalence relation is by the powers of T'. The correspondence is
given by L — u € Rg.

The existence of a fake lens space in the homotopy type of such L is addressed in
[14, Theorem 14E.4]. Unless both N and d are even there always exists a manifold
homotopy equivalent to the complex L.

5.4. Fake lens spaces versus classical lens spaces. Since the units &'(u) €
Zy are exhausted by the lens spaces L?*Y(N,k,1,...,1) we obtain the following
corollary.

Corollary 5.5. For any fake lens space L?**~!(a) there exists k € N and a homotopy
equivalence

h: L2 Y(a) — L* YNk, 1,...,1).

We note that the simple homotopy classification of fake lens spaces of course
includes the simple homotopy classification of the classical lens spaces. For the
classical lens spaces this also already yields the homeomorphism classification, the
details can be found on the page about lens spaces or in [4].

6. HOMEOMORPHISM CLASSIFICATION

The homeomorphism classification, as already noted, is an excellent application of
the non-simply connected surgery theory. Recall that for a topological manifold X
the surgery theoretic homeomorphism classification of manifolds wihin the homotopy
type of X is stated in terms of the simple surgery structure set S*(X) and that the
primary tool for its calculation is the surgery exact sequence.

The homeomorphism classification described here of course specializes to the
homeomorphism classification of the classical lens spaces as can be found on the
page on lens spaces, and see also the Remark 6.5 at the end of this section.

6.1. N is odd. In terms of the structure set the main result of [14, section 14E]
can be expressed as follows.
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Theorem 6.1. [14, Theorem 14E.7] If N is odd, then the reduced p-invariant map
7 S (L*Y(a)) — QRS
given by p(h: L — L(a)) — p(L) — p(L(«)) s injective.

However, in this case, that means for N odd, Wall managed to obtain an even
better result, namely the complete classification of fake lens spaces of a given di-
mension (2d — 1) > 5 with the fundamental group G = Zy which is stated in the
two theorems below.

The classification theorem is:

Theorem 6.2. [14, Theorem 14E.7, first part] Let L' and L**" be oriented
fake lens spaces with fundamental group G cyclic of odd order N. Then there is an
orientation preserving homeomorphism L — L' inducing the identity on G if and

only if A(L) = A(L") and p(L) = p(L').
The realization theorem is:

Theorem 6.3. [14, Theorem 14E.7, second part] Let G be cyclic of odd order. Given
A € Rg and p € QRg, there exists a corresponding fake lens space L1 if and only
if the following four statements hold:

e A and p are both real (d even) or imaginary (d odd).
o A generates I, p € I(I;”.

e The classes of p mod ]é”“ and (—2)"A mod IZ™ correspond under
LI =BG Z) = H NG Z) = I/ 15T

ep=— > sign(i"¢(A))¢ mod 4.
9€G 471

6.2. N is general. The remaining cases were addressed in [10] and [9] from where
the following theorem, stated in tems of the structure set is taken.

Theorem 6.4. [9, Theorem 1.2] Let L**~!(«) be a fake lens space with 7 (L** (o)) =
Zy where N =25 . M with K >0, M odd and d > 3. Then we have

(ﬁ, | TN r4i) . SS(LQd_l(Of)) = iN(d) @ @ ZQmin{K,l} @ @ ZQmin{K,%}
i=1 i=1
where Y (d) C QRgl)d is a free abelian group. If N is odd then its rank is (N —1)/2.
If N is even then its rank is N/2—1 ifd = 2e+1 and N/2 if d = 2e. In the torsion
summand we have ¢ = [(d —1)/2].

The invariant p in Theorem 6.4 is the same reduced p-invariant as above. The
invariants ry;_o : S*(L?7"Y(a)) — Zgymmix1y are equal to the splitting invariants
s4i_o described in Section 4. The invariants ry; : S*(L?T () — Zgmin(x.2i} are
related to the the splitting invariants sy; described in Section 4, but they do not
have a straightforward description, only an inductive one, see [9, section 7] for more
details.
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6.3. Some ideas from the proofs. As mentioned above the strategy in all cases
is to investigate the surgery exact sequence for L. In this case there is enough
information about the normal invariants, the L-groups and the surgery obstruction
so that one is left with just an extension problem. Briefly speaking the normal
invariants can be calculated separately when localized at 2, in which case a reduction
to ordinary cohomology with coefficients in Z and Z, is obtained, and away from
2, in which case a real reduced K-theory is obtained. This is well-known for L(«).
The L-groups are completely described by the representation theory of G. By these
calculations the surgery obstruction map can only be non-trivial in one case which
is investigated in [14, Theorem 14E.4]. To proceed further it is convenient to study
the relation of the surgery exact sequence to representation theory of G. This is
done via the following commutative diagram of abelian groups and homomorphisms
with exact rows.

0 —— L3,(G) —2> S3(L* () N(L* @) ——0

N\LGsign \L; l[ﬂ

| 1 (-1)¢ ()% 1y . pl-)
0 4+ RS QRS QRS /4 RS 0

Here the symbol Egd(G) denotes the reduced L-group and the vertical isomorphism
from it is the G-signature which can be found for example in [7]. The symbol
N(L*1(a)) denotes the kernel of the surgery obstruction map. As mentioned
above it defers from the normal invariants N (L*~!(a)) only in one case, namely
when both N and d are even, and in that case the difference turns out to be a factor
of Zy. The symbol [p] is the homomorphism induced by p.

To obtain Theorem 6.1 it is shown in [14] that the map [p] is injective [14, Propo-
sition 14E.6]. The proof proceeds by induction with respect to the dimension 2d — 1.
The crucial ingredient is the transfer which produces fake lens spaces from fake com-
plex projective spaces and the formula for the p-invariant of fake complex projective
spaces [14, Theorem 14C.4] which by naturality of the p-invariant with respect to
taking subgroups translates to a formula for the p-invariant of the associated fake
lens spaces [14, Theorem 14E.8 (c)]. The induction is possible thanks to the sus-
pension construction described in Section 8 below and the multiplicativity of the
p-invariant with respect to this construction [14, Theorem 14A.1].

To obtain Theorem 6.4 again the map [p] is studied, first in case N = 2% when
it turns out not to be injective. The kernel of [p] is determined in general in [10].
The result is again obtained via fake complex projective spaces and the formula [14,
Theorem 14C.4]. However, in this case the calculation is obtained via induction on
K (where remember N = 2K) for any fixed 2d — 1.

Finally, in [9] the two special cases are combined to obtain the general cases via
mostly formal arguments.

Remark 6.5. The homeomorphism classification of classical lens spaces due to
[6] and [5], given on the lens space page, is a special case of Theorem 6.2. The
additional sign and factor of k appearing in the statement of the classical theorem
arise since Theorem 6.2 classifies oriented lens spaces with a fixed identification of
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the fundamental group. The sign allows for a change of orientation and the factor
of k for a change of generator for the fundamental group.

7. CONSTRUCTION AND EXAMPLES

Classical lens spaces are of course examples of fake lens spaces. To get fake lens
spaces which are not homeomorphic to classical ones one can employ the construction
of fake complex projective spaces. Note that a fake complex projective space is
an orbit space of a free tame action of S' on S%¢~! and that we obviously have
Zyn = G < S'. Restricting the action to the subgroup we obtain a fake lens space. Its
p-rho-invariant can be calculated by naturality using the formula for the p-invariant
of the circle action.

The above construction does not exhaust all the fake lens spaces. To get all of
them there is a construction which produces from a given fake lens space L another
fake lens space L’ such that the difference of their p-invariants is a prescribed element

p(L) —p(L') =z ea-REV".

The construction is just the Wall realization from surgery theory, alias a non-simply
connected generalization of the plumbing construction.

Another possibilty is to obtain fake lens spaces as orbit spaces of actions of G' on
Brieskorn varieties. This was pursued for example in [11].

8. THE JOIN CONSTRUCTION / THE SUSPENSION MAP

Let G be a group acting freely on the spheres S™ and S™. Then the two actions
extend to the join S™F"F! = §™m 4 S and the resulting action remains free.

Given two fake lens spaces L and L', one can pass to the universal covers, form
the join and then pass to the quotient again. The resulting space is again a fake
lens space. This operation is called the join and denoted by L * L', or L(a x o') =
L(a) * L().

Given two manifold structures h: L =% L(a) and h: L' =% L(c’), one can pass
to the induced maps of the universal covers, extend them to a map of the joins and
pass to the map of quotients. This will again be a simple homotopy equivalence and
hence a manifold structure h * h': L x L' =% L(a * o)

When L' = L'(N,1) = L'(«;) this operation is called a suspension. Taking
h' = id in the above paragraph defines a map

¥ SHL* " a)) = SHLAP M (a* ay)).
Theorem 8.1. [14, Corollary on page 228 in section 14E] If N is odd and d > 3
then the map
¥ (L)) — SHL*  a *x ay))
s bijective.
The proof is based on the classification theorem above.

Theorem 8.2. [9, Theorem 6.1 and 6.2] For N even and e > 1 there are eract
sequences

0 — S (L4 (o)) == S* (LY (o)) 25 Z — 0,
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0= Z — S (LY (o)) = S* (LY () 2 Zy — 0.

The invariants o and pu (alias desuspension obstructions) are obtained by passing
to the associated fake real projective spaces via the transfer (alias restricting the
group action to Zs) and taking the Browder-Livesay invariants described in [8] and
[14, Chapter 12]. The invariant o can be identified with the p-invariant associated
to manifolds with m; = Zy (in which case it is just an integer).

The proof is based on the classification theorem above and also on the proofs of
the analogous theorems for N = 2 described on the page fake real projective spaces.

9. FURTHER SOURCES

The sources mentioned in the text are those where the final classification state-
ments were presented. They built on the previous work, some of which is contained
in the following papers: [1], [3], [12], [13], [2].
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