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Aspherical manifolds*

WOLFGANG LÜCK

Abstract. This is a survey on known results and open problems about closed
aspherical manifolds, i.e., connected closed manifolds whose universal coverings
are contractible. Many examples come from certain kinds of non-positive curva-
ture conditions. The property aspherical, which is a purely homotopy theoretical
condition, has many striking implications about the geometry and analysis of the
manifold or its universal covering, and about the ring theoretic properties and the
K- and L-theory of the group ring associated to its fundamental group.
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1. Introduction

This page is devoted to aspherical closed manifolds.

Definition 1.1. A space X is called aspherical if it is path connected and all its
higher homotopy groups vanish, i.e., πn(X) is trivial for n ≥ 2.

Aspherical closed manifolds are very interesting objects since there are many
examples, intriguing questions and conjectures about them. For instance:

• Interesting geometric constructions or examples lead to aspherical closed
manifolds, e.g., non-positively curved closed manifolds, closed surfaces ex-
cept S2 and RPn, irreducible closed orientable 3-manifolds with infinite fun-
damental groups, locally symmetric spaces arising from almost connected Lie
groups and discrete torsionfree cocompact lattices.
• There are exotic aspherical closed manifolds which do not come from stan-
dard constructions and have unexpected properties, e.g., the universal cov-
ering is not homeomorphic to Rn, they are not triangulable. The key con-
struction methods are the reflection trick and hyperbolization.
• Which groups occur as fundamental groups of aspherical closed manifolds?
• The Borel Conjecture predicts that aspherical closed topological manifolds
are topologically rigid, i.e., any homotopy equivalence of aspherical closed
manifolds is homotopic to the identity.
• The condition aspherical is of purely homotopy theoretical nature. Nev-
ertheless there are some interesting questions and conjectures such as the
Singer Conjecture and the Zero-in-the-Spectrum Conjecture about the spec-
trum of the Laplace operator on the universal coverings of aspherical closed
Riemannian manifolds.
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2 Wolfgang Lück

2. Homotopy classification of spaces

From the homotopy theory point of view an aspherical CW -complex is completely
determined by its fundamental group. Namely,

Theorem 2.1 (Homotopy classification of aspherical spaces). Two aspherical CW -
complexes are homotopy equivalent if and only if their fundamental groups are iso-
morphic.

Proof. By Whitehead’s Theorem (see [75, Theorem IV.7.15 on page 182]) a map
between CW -complexes is a homotopy equivalence if and only if it induces on
all homotopy groups bijections. Hence it suffices to construct for two aspherical
CW -complexes X and Y together with an isomorphism φ : π1(X) → π1(Y ) a map
f : X → Y which induces φ on the fundamental groups. Any connected CW -
complex is homotopy equivalent to a CW -complex with precisely one 0-cell, other-
wise collapse a maximal sub-tree of the 1-skeleton to a point. Hence we can assume
without loss of generality that the 1-skeleton of X is a bouquet of 1-dimensional
spheres. The map φ tells us how to define f1 : X1 → Y , where Xn will denote the
n-skeleton of Xn. The composites of the attaching maps for the two-cells of X with
f1 are null-homotopic by the Seifert-van Kampen Theorem. Hence we can extend
f1 to a map f2 : X2 → Y . Since all higher homotopy groups of Y are trivial, we can
extend f2 to a map f : X → Y . �

Lemma 2.2. A CW -complex X is aspherical if and only if it is connected and its
universal covering X̃ is contractible.

Proof. The projection p : X̃ → X induces isomorphisms on the homotopy groups πn
for n ≥ 2 and a connected CW -complex is contractible if and only if all its homotopy
groups are trivial (see [75, Theorem IV.7.15 on page 182]). �

An aspherical CW -complex X with fundamental group π is the same as an Eilen-
berg Mac-Lane space K(π, 1) of type (π, 1) and the same as the classifying space Bπ
for the group π.

3. Examples of aspherical manifolds

3.1. Non-positive curvature. Let M be a closed smooth manifold. Suppose that
it possesses a Riemannian metric whose sectional curvature is non-positive, i.e., is
≤ 0 everywhere. Then the universal covering M̃ inherits a complete Riemannian
metric whose sectional curvature is non-positive. Since M̃ is simply-connected and
has non-positive sectional curvature, the Hadamard-Cartan Theorem (see [36, 3.87
on page 134]) implies that M̃ is diffeomorphic to Rn and hence contractible. We
conclude that M̃ and hence M is aspherical.

3.2. Low-dimensions. A connected closed 1-dimensional manifold is homeomor-
phic to S1 and hence aspherical.

LetM be a connected closed 2-dimensional manifold. ThenM is either aspherical
or homeomorphic to S2 or RP2. The following statements are equivalent:

(1) M is aspherical.
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Aspherical manifolds 3

(2) M admits a Riemannian metric which is flat, i.e., with sectional curvature
constant 0, or which is hyperbolic, i.e., with sectional curvature constant −1.

(3) The universal covering of M is homeomorphic to R2.
A connected closed 3-manifoldM is called prime if for any decomposition as a con-

nected sumM ∼= M0]M1 one of the summandsM0 orM1 is homeomorphic to S3. It
is called irreducible if any embedded sphere S2 bounds a disk D3. Every irreducible
closed 3-manifold is prime. A prime closed 3-manifold is either irreducible or an S2-
bundle over S1 (see [41, Lemma 3.13 on page 28]). A closed orientable 3-manifold
is aspherical if and only if it is irreducible and has infinite fundamental group. This
follows from the Sphere Theorem [41, Theorem 4.3 on page 40]. Thurston’s Ge-
ometrization Conjecture implies that a closed 3-manifold is aspherical if and only if
its universal covering is homeomorphic to R3. This follows from [41, Theorem 13.4
on page 142] and the fact that the 3-dimensional geometries which have compact
quotients and whose underlying topological spaces are contractible have as underly-
ing smooth manifold R3 (see [72]). A proof of Thurston’s Geometrization Conjecture
is given in [62] following ideas of Perelman. There are examples of closed orientable
3-manifolds that are aspherical but do not support a Riemannian metric with non-
positive sectional curvature (see [52]). For more information about 3-manifolds we
refer for instance to [41, 72].

3.3. Torsionfree discrete subgroups of almost connected Lie groups. Let L
be a Lie group with finitely many path components. Let K ⊆ L be a maximal com-
pact subgroup. Let G ⊆ L be a discrete torsionfree subgroup. ThenM = G\L/K is
an aspherical closed manifold with fundamental group G since its universal covering
L/K is diffeomorphic to Rn for appropriate n (see [40, Theorem 1. in Chapter VI]).

3.4. Products and fibrations. Obviously the product X × Y of two aspherical
spaces is again aspherical. More generally, if F → E → B is a fibration for aspherical
spaces B and F , then the long homotopy sequence associated to it shows that E is
aspherical.

3.5. Pushouts. Let X be a CW -complex with sub-CW -complexes X0, X1 and X2
such that X = X1 ∪ X2 and X0 = X1 ∩ X2. Suppose that X0, X1 and X2 are
aspherical and that for i = 0, 1, 2 and each base point xi ∈ Xi the inclusion induces
an injection π1(Xi, xi)→ π1(X, xi). Then X is aspherical. The idea of the proof is
to check by a Mayer-Vietoris argument that the reduced homology of X̃ is trivial as
X̃ is the union of π1(X)×π1(X1) X̃1 and π1(X)×π1(X2) X̃2, and π1(X)×π1(X0) X̃0 is
the intersection of π1(X)×π1(X1) X̃1 and π1(X)×π1(X2) X̃2. Hence X̃ is contractible
by the Hurewicz Theorem (see [75, Theorem IV.7.15 on page 182]).

3.6. Hyperbolization. A very important construction of aspherical closed mani-
folds comes from the hyperbolization technique due to Gromov [38]. It turns a cell
complex into a non-positively curved (and hence aspherical) polyhedron. The rough
idea is to define this procedure for simplices such that it is natural under inclusions
of simplices and then define the hyperbolization of a simplicial complex by gluing
the results for the simplices together as described by the combinatorics of the sim-
plicial complex. The goal is to achieve that the result shares some of the properties
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4 Wolfgang Lück

of the simplicial complexes one has started with, but additionally to produce a non-
positively curved and hence aspherical polyhedron. Since this construction preserves
local structures, it turns manifolds into manifolds. We briefly explain what the ori-
entable hyperbolization procedure gives. Further expositions of this construction can
be found in [15, 20, 21, 18]. We start with a finite-dimensional simplicial complex
Σ and assign to it a cubical cell complex h(Σ) and a natural map c : h(Σ)→ Σ with
the following properties:

(1) h(Σ) is non-positively curved and in particular aspherical;
(2) The natural map c : h(Σ)→ Σ induces a surjection on the integral homology;
(3) π1(f) : π1(h(Σ))→ π1(Σ) is surjective;
(4) If Σ is an orientable manifold, then
(5) h(Σ) is a manifold;
(6) The natural map c : h(Σ)→ Σ has degree one;
(7) There is a stable isomorphism between the tangent bundle Th(Σ) and the

pullback c∗TΣ;

3.7. Exotic aspherical closed manifolds. The following result is taken from
Davis-Januszkiewicz [18, Theorem 5a.1].
Theorem 3.1. There is an aspherical closed 4-manifold N with the following prop-
erties:

(1) N is not homotopy equivalent to a PL-manifold;
(2) N is not triangulable, i.e., not homeomorphic to a simplicial complex;
(3) The universal covering Ñ is not homeomorphic to R4;
(4) N is homotopy equivalent to a piecewise flat, non-positively curved polyhe-

dron.
The next result is due to Davis-Januszkiewicz [18, Theorem 5a.4].

Theorem 3.2 (Non-PL-example). For every n ≥ 4 there exists an aspherical closed
n-manifold which is not homotopy equivalent to a PL-manifold

The proof of the following theorem can be found in [19], [18, Theorem 5b.1].
Theorem 3.3 (Exotic universal covering). For each n ≥ 4 there exists an aspherical
closed n-dimensional manifold such that its universal covering is not homeomorphic
to Rn.

By the Hadamard-Cartan Theorem (see [36, 3.87 on page 134]) the manifold
appearing in Theorem 3.3 above cannot be homeomorphic to a smooth manifold with
Riemannian metric with non-positive sectional curvature. The following theorem is
proved in [18, Theorem 5c.1 and Remark on page 386] by considering the ideal
boundary, which is a quasiisometry invariant in the negatively curved case.
Theorem 3.4 (Exotic example with hyperbolic fundamental group). For every
n ≥ 5 there exists an aspherical closed smooth n-dimensional manifold N which
is homeomorphic to a strictly negatively curved polyhedron and has in particular a
hyperbolic fundamental group such that the universal covering is homeomorphic to
Rn but N is not homeomorphic to a smooth manifold with Riemannian metric with
negative sectional curvature.
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Aspherical manifolds 5

The next results are due to Belegradek [8, Corollary 5.1], Mess [60] andWeinberger
(see [20, Section 13]).

Theorem 3.5 (Exotic fundamental groups). (1) For every n ≥ 4 there is an
aspherical closed manifold of dimension n whose fundamental group contains
an infinite divisible abelian group;

(2) For every n ≥ 4 there is an aspherical closed manifold of dimension n whose
fundamental group has an unsolvable word problem and whose simplicial vol-
ume is non-zero.

Notice that a finitely presented group with unsolvable word problem is not a
CAT(0)-group, not hyperbolic, not automatic, not asynchronously automatic, not
residually finite and not linear over any commutative ring (see [8, Remark 5.2]). The
proof of Theorem 3.5 is based on the reflection group trick as it appears for instance
in [20, Sections 8, 10 and 13]. It can be summarized as follows.

Theorem 3.6 (Reflection group trick). Let G be a group which possesses a fi-
nite model for BG. Then there is an aspherical closed manifold M and two maps
i : BG→M and r : M → BG such that r ◦ i = idBG.

Remark 3.7 (Reflection group trick and various conjectures). Another interesting
immediate consequence of the reflection group trick is (see also [20, Sections 11]) that
many well-known conjectures about groups hold for every group which possesses a
finite model for BG if and only if it holds for the fundamental group of every aspher-
ical closed manifold. This applies for instance to the Kaplansky Conjecture, Unit
Conjecture, Zero-divisor-conjecture, Baum-Connes Conjecture, Farrell-Jones Con-
jecture for algebraic K-theory for regular R, Farrell-Jones Conjecture for algebraic
L-theory, the vanishing of K̃0(ZG) and of Wh(G) = 0, For information about these
conjectures and their links we refer for instance to [5], [56] and [54]. Further similar
consequences of the reflection group trick can be found in Belegradek [8].

4. Non-aspherical closed manifolds

A closed manifold of dimension ≥ 1 with finite fundamental group is never as-
pherical. So prominent non-aspherical closed manifolds are spheres, lens spaces, real
projective spaces and complex projective spaces.

Lemma 4.1. The fundamental group of an aspherical finite-dimensional CW -complex
X is torsionfree.

Proof. Let C ⊆ π1(X) be a finite cyclic subgroup of π1(X). We have to show that C
is trivial. Since X is aspherical, C\X̃ is a finite-dimensional model for BC. Hence
Hk(BC) = 0 for large k. This implies that C is trivial. �

We mention without proof:

Lemma 4.2. If M is a connected sum M1]M2 of two closed manifolds M1 and M2
of dimension n ≥ 3 which are not homotopy equivalent to a sphere, then M is not
aspherical.
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6 Wolfgang Lück

5. Characteristic classes and bordisms of aspherical closed
manifolds

Suppose that M is a closed manifold. Then the pullbacks of the characteristic
classes of M under the natural map c : h(M) → M appearing in the Section 3.6
about hyperbolization yield the characteristic classes of h(M) and M and h(M)
have the same characteristic numbers. This shows that the condition aspherical
does not impose any restrictions on the characteristic numbers of a manifold. Con-
sider a bordism theory Ω∗ for PL-manifolds or smooth manifolds which is given by
imposing conditions on the stable tangent bundle. Examples are unoriented bor-
dism, oriented bordism, framed bordism. Then any bordism class can be represented
by an aspherical closed manifold. If two aspherical closed manifolds represent the
same bordism class, then one can find an aspherical bordism between them. See [20,
Remarks 15.1], [18, Theorem B], and [17].

6. The Borel Conjecture

Definition 6.1 (Topologically rigid). We call a closed manifold N topologically
rigid if any homotopy equivalence M → N with a closed manifold M as source is
homotopic to a homeomorphism.

The Poincaré Conjecture is equivalent to the statement that any sphere Sn is
topologically rigid.

Conjecture 6.2 (Borel Conjecture). Every aspherical closed manifold is topologi-
cally rigid.

In particular the Borel Conjecture 6.2 implies because of Theorem 2.1 that two as-
pherical closed manifolds are homeomorphic if and only if their fundamental groups
are isomorphic.

Remark 6.3 (The Borel Conjecture in low dimensions). The Borel Conjecture is
true in dimension ≤ 2 by the classification of closed manifolds of dimension 2. It is
true in dimension 3 if Thurston’s Geometrization Conjecture is true. This follows
from results of Waldhausen (see Hempel [41, Lemma 10.1 and Corollary 13.7]) and
Turaev (see [73]) as explained for instance in [50, Section 5]. A proof of Thurston’s
Geometrization Conjecture is given in [62] following ideas of Perelman.

Remark 6.4 (Topological rigidity for non-aspherical manifolds). Topological rigid-
ity phenomenons do hold also for some non-aspherical closed manifolds. For instance
the sphere Sn is topologically rigid by the Poincaré Conjecture. The Poincaré Con-
jecture is known to be true in all dimensions. This follows in high dimensions from
the h-cobordism theorem, in dimension four from the work of Freedman [34], in
dimension three from the work of Perelman as explained in [48] and [61] and in
dimension two from the classification of surfaces. Many more examples of classes of
manifolds which are topologically rigid are given and analyzed in Kreck-Lück [50].
For instance the connected sum of closed manifolds of dimension ≥ 5 which are
topologically rigid and whose fundamental groups do not contain elements of order
two, is again topologically rigid and the connected sum of two manifolds is in general
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not aspherical (see Lemma 4.2). The product Sk × Sn is topologically rigid if and
only if k and n are odd.

Remark 6.5 (The Borel Conjecture does not hold in the smooth category). The
Borel Conjecture 6.2 is false in the smooth category, i.e., if one replaces topological
manifold by smooth manifold and homeomorphism by diffeomorphism. The torus
T n for n ≥ 5 is an example (see [74, 15A]).

Other interesting counterexamples involving negatively curved manifolds are given
by Farrell-Jones [24, Theorem 0.1]. They construct for every δ > 0 and d ≥ 5 a
d-dimensional closed hyperbolic manifold M and a closed Riemannian manifold N
such that the sectional curvature of N is pinched between −1 − δ and −1 + δ and
the manifolds M and N are homeomorphic but not diffeomorphic.

Remark 6.6 (The Borel Conjecture versus Mostow rigidity). The examples of
Farrell-Jones [24, Theorem 0.1] give actually more. Namely, they yield for given
ε > 0 a closed Riemannian manifold M0 whose sectional curvature lies in the inter-
val [1 − ε,−1 + ε] and a closed hyperbolic manifold M1 such that M0 and M1 are
homeomorphic but no diffeomorphic. The idea of the construction is essentially to
take the connected sum of M1 with exotic spheres. Notice that by definition M0
were hyperbolic if we would take ε = 0. Hence this example is remarkable in view
of Mostow rigidity, which predicts for two closed hyperbolic manifolds N0 and N1
that they are isometrically diffeomorphic if and only if π1(N0) ∼= π1(N1) and any
homotopy equivalence N0 → N1 is homotopic to an isometric diffeomorphism. One
may view the Borel Conjecture as the topological version of Mostow rigidity. The
conclusion in the Borel Conjecture is weaker, one gets only homeomorphisms and
not isometric diffeomorphisms, but the assumption is also weaker, since there are
many more aspherical closed topological manifolds than hyperbolic closed manifolds.

Remark 6.7 (The work of Farrell-Jones). Farrell-Jones have made deep contri-
butions to the Borel Conjecture. They have proved it in dimension ≥ 5 for non-
positively curved closed Riemannian manifolds, for compact complete affine flat
manifolds and for aspherical closed manifolds whose fundamental group is isomor-
phic to the fundamental group of a complete non-positively curved Riemannian
manifold which is A-regular (see [25, 26, 27, 28]).

The following result is a consequence of [3, 7, 4].

Theorem 6.8. Let B be the smallest class of groups satisfying:
• Every hyperbolic group belongs to B;
• Every CAT(0)-group, i.e., a group that acts properly, isometrically and co-
compactly on a complete proper CAT(0)-space, belongs to B;
• Every cocompact lattice in an almost connected Lie group belongs to B;
• Every arithmetic group over an algebraic number field belongs to B;
• If G1 and G2 belong to B, then both G1 ∗G2 and G1 ×G2 belong to B;
• If H is a subgroup of G and G ∈ B, then H ∈ B;
• Let {Gi | i ∈ I} be a directed system of groups (with not necessarily injective
structure maps) such that Gi ∈ B for every i ∈ I. Then the directed colimit
colimi∈I Gi belongs to B.
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8 Wolfgang Lück

Then every aspherical closed manifold of dimension ≥ 5 whose fundamental group
belongs to B is topologically rigid.

Actually, Bartels and Lück [7] prove the Farrell-Jones Conjecture about the al-
gebraic K- and L-theory of group rings which does imply the claim appearing in
Theorem 6.8 by surgery theory.
Remark 6.9 (Exotic aspherical closed manifolds). Theorem 6.8 implies that the
exotic aspherical manifolds mentioned in Subsection 3.7 satisfy the Borel Conjecture
in dimension ≥ 5 since their universal coverings are CAT(0)-spaces.
Remark 6.10 (Directed colimits of hyperbolic groups). There are also a variety of
interesting groups such as lacunary groups in the sense of Olshanskii-Osin-Sapir [?]
or groups with expanders as they appear in the counterexample to the Baum-Connes
Conjecture with coefficients due to Higson-Lafforgue-Skandalis [42] and which have
been constructed by Arzhantseva-Delzant [1, Theorem 7.11 and Theorem 7.12] fol-
lowing ideas of Gromov [39]. Since these arise as colimits of directed systems of
hyperbolic groups, they do satisfy the Farrell-Jones Conjecture and the Borel Con-
jecture in dimension ≥ 5 by Bartels and Lück [7]. The Bost Conjecture has also
been proved for colimits of hyperbolic groups by Bartels-Echterhoff-Lück [2].

7. Poincaré duality groups

In this section we deal with the question when a group G is the fundamental group
of an aspherical closed manifold. The following definition is due to Johnson-Wall
[46].
Definition 7.1 (Poincaré duality group). A group G is called a Poincaré duality
group of dimension n if the following conditions holds:

(1) The group G is of type FP, i.e., the trivial ZG-module Z possesses a finite-
dimensional projective ZG-resolution by finitely generated projective ZG-
modules;

(2) We get an isomorphism of abelian groups

H i(G;ZG) ∼=
{
{0} for i 6= n;
Z for i = n.

Conjecture 7.2 (Poincaré duality groups). A finitely presented group is a n-
dimensional Poincaré duality group if and only if it is the fundamental group of
an aspherical closed n-dimensional topological manifold.

A topological space X is called an absolute neighborhood retract or briefly ANR
if for every normal space Z, every closed subset Y ⊆ Z and every (continuous)
map f : Y → X there exists an open neighborhood U of Y in Z together with
an extension F : U → Z of f to U . A compact n-dimensional homology ANR-
manifold X is a compact absolute neighborhood retract such that it has a countable
basis for its topology, has finite topological dimension and for every x ∈ X the
abelian group Hi(X,X − {x}) is trivial for i 6= n and infinite cyclic for i = n. A
closed n-dimensional topological manifold is an example of a compact n-dimensional
homology ANR-manifold (see [16, Corollary 1A in V.26 page 191]). For a proof of
the next result we refer to [58, Section 5].
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Theorem 7.3. Suppose that the torsionfree group G belongs to the class B occurring
in Theorem 6.8 and its cohomological dimension is ≥ 6. Then G is the fundamental
group of an aspherical compact homology ANR-manifold.

Remark 7.4 (Compact homology ANR-manifolds versus closed topological mani-
folds). One would prefer if in the conclusion of Theorem 7.3 one could replace ‘com-
pact homology ANR-manifold’ by ‘closed topological manifold’. There are compact
homology ANR-manifolds that are not homotopy equivalent to closed manifolds.
But no example of an aspherical compact homology ANR-manifold that is not ho-
motopy equivalent to a closed topological manifold is known.

The Borel Conjecture about the topologically rigidity of closed topological mani-
folds and the fact that it is implied by the Farrell-Jones Conjecture indimensions ≥ 5
carry over to compact homology ANR-manifolds if one replaces ‘being homotopic
to a homeomorphism’ by ‘being s-cobordant to a homeomorphism’.

We refer for instance to [12, 29, 68, 69, 70] for more information about this topic.

8. Product decompositions

In this section we show that, roughly speaking, an aspherical closed manifoldM is
a productM1×M2 if and only if its fundamental group is a product π1(M) = G1×G2
and that such a decomposition is unique up to homeomorphism. A proof of the next
result can be found in [58, Section 6].

Theorem 8.1 (Product decomposition). Let M be an aspherical closed manifold
of dimension n with fundamental group G = π1(M). Suppose we have a product
decomposition

p1 × p2 : G
∼=−→ G1 ×G2.

Suppose that G, G1 and G2 belong to the class B occurring in Theorem 6.8. Assume
that the cohomological dimension cd(Gi) is different from 3, 4 and 5 for i = 1, 2 and
n 6= 4. Then:

(1) There are aspherical closed topological manifolds M1 and M2 together with
isomorphisms

vi : π1(Mi)
∼=−→ Gi

and maps
fi : M →Mi

for i = 1, 2 such that
f = f1 × f2 : M →M1 ×M2

is a homeomorphism and vi ◦ π1(fi) = pi (up to inner automorphisms) for
i = 1, 2;

(2) Suppose we have another such choice of aspherical closed manifolds M ′
1 and

M ′
2 together with isomorphisms

v′i : π1(M ′
i)
∼=−→ Gi

and maps
f ′i : M →M ′

i

Bulletin of the Manifold Atlas 2012



10 Wolfgang Lück

for i = 1, 2 such that the map f ′ = f ′1 × f ′2 is a homotopy equivalence and
v′i ◦ π1(f ′i) = pi (up to inner automorphisms) for i = 1, 2. Then there are
for i = 1, 2 homeomorphisms hi : Mi → M ′

i such that hi ◦ fi ' f ′i and
vi ◦ π1(hi) = v′i holds for i = 1, 2.

Remark 8.2 (Product decompositions and non-positive sectional curvature). The
following result has been proved independently by Gromoll-Wolf [37, Theorem 2]
and Lawson-Yau [51]. Let M be a closed Riemannian manifold with non-positive
sectional curvature. Suppose that we are given a splitting of its fundamental group
π1(M) = G1 × G2 and that the center of π1(M) is trivial. Then this splitting
comes from an isometric product decomposition of closed Riemannian manifolds of
non-positive sectional curvature M = M1 ×M2.

9. The Novikov Conjecture

Let G be a group and let u : M → BG be a map from a closed oriented smooth
manifold M to BG. Let

L(M) ∈
⊕

k∈Z,k≥0
H4k(M ;Q)

be the L-class of M . Its k-th entry L(M)k ∈ H4k(M ;Q) is a certain homogeneous
polynomial of degree k in the rational Pontrjagin classes pi(M ;Q) ∈ H4i(M ;Q) for
i = 1, 2, . . . , k such that the coefficient sk of the monomial pk(M ;Q) is different from
zero. The L-class L(M) is determined by all the rational Pontrjagin classes and vice
versa. The L-class depends on the tangent bundle and thus on the differentiable
structure ofM . For x ∈ ∏k≥0 H

k(BG;Q) define the higher signature ofM associated
to x and u to be the integer

signx(M,u) := 〈L(M) ∪ f ∗x, [M ]〉.
We say that signx for x ∈ H∗(BG;Q) is homotopy invariant if for two closed oriented
smooth manifolds M and N with reference maps u : M → BG and v : N → BG we
have

signx(M,u) = signx(N, v),
whenever there is an orientation preserving homotopy equivalence f : M → N such
that v ◦ f and u are homotopic. If x = 1 ∈ H0(BG), then the higher signature
signx(M,u) is by the Hirzebruch signature formula (see [44, 45]) the signature of M
itself and hence an invariant of the oriented homotopy type. This is one motivation
for the following conjecture.

Conjecture 9.1 (Novikov Conjecture). Let G be a group. Then signx is homotopy
invariant for all x ∈ ∏k∈Z,k≥0 H

k(BG;Q).

This conjecture appears for the first time in the paper by Novikov [66, § 11]. A
survey about its history can be found in [32]. More information can be found for
instance in [30, 31, 49].

Remark 9.2 (The Novikov Conjecture and aspherical closed manifolds). Let the
map f : M → N be a homotopy equivalence of aspherical closed oriented manifolds.
Then the Novikov Conjecture 9.1 implies that f∗L(M) = L(N). This is certainly
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true if f is a diffeomorphism. On the other hand, in general the rational Pontrjagin
classes are not homotopy invariants and the integral Pontrjagin classes pk(M) are
not homeomorphism invariants (see for instance [49, Example 1.6 and Theorem
4.8]). This seems to shed doubts about the Novikov Conjecture. However, if the
Borel Conjecture is true, the map f : M → N is homotopic to a homeomorphism
and the conclusion f∗L(M) = L(N) does follow from the following deep result due
to Novikov [64, 63, 65].

Theorem 9.3 (Topological invariance of rational Pontrjagin classes). The ratio-
nal Pontrjagin classes pk(M,Q) ∈ H4k(M ;Q) are topological invariants, i.e. for a
homeomorphism f : M → N of closed smooth manifolds we have

H4k(f ;Q)
(
pk(M ;Q)

)
= pk(N ;Q)

for all k ≥ 0 and in particular H∗(f ;Q)(L(M)) = L(N).

Remark 9.4 (Positive scalar curvature). There is the conjecture that a closed
aspherical smooth manifold does not carry a metric of positive scalar curvature.
One evidence for it is the fact that it is implied by the (strong) Novikov Conjecture
see [71, Theorem 3.5].

10. Boundaries of hyperbolic groups

We mention the following result of Bartels-Lück-Weinberger [6]. For the notion
of the boundary of a hyperbolic group and its main properties we refer for instance
to [47].

Theorem 10.1. Let G be a torsion-free hyperbolic group and let n be an integer
≥ 6. Then the following statements are equivalent:

(1) The boundary ∂G is homeomorphic to Sn−1;
(2) There is an aspherical closed topological manifold M such that G ∼= π1(M),

its universal covering M̃ is homeomorphic to Rn and the compactification of
M̃ by ∂G is homeomorphic to Dn;

(3) The aspherical closed topological manifoldM appearing in the assertion above
is unique up to homeomorphism.

In general the boundary of a hyperbolic group is not locally a Euclidean space but
has a fractal behavior. If the boundary ∂G of an infinite hyperbolic group G contains
an open subset homeomorphic to Euclidean n-space, then it is homeomorphic to Sn.
This is proved in [47, Theorem 4.4], where more information about the boundaries
of hyperbolic groups can be found. For every n ≥ 5 there exists a strictly negatively
curved polyhedron of dimension n whose fundamental groupG is hyperbolic, which is
homeomorphic to an aspherical closed smooth manifold and whose universal covering
is homeomorphic to Rn, but the boundary ∂G is not homeomorphic to Sn−1, see [18,
Theorem 5c.1 on page 384 and Remark on page 386]. Thus the condition that ∂G
is a sphere for a torsion-free hyperbolic group is (in high dimensions) not equivalent
to the existence of an aspherical closed manifold whose fundamental group is G.
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Remark 10.2 (The Cannon Conjecture). We do not get information in dimensions
n ≤ 4 for the usual problems about surgery. In the case n = 3 there is the conjec-
ture of Cannon [13] that a group G acts properly, isometrically and cocompactly on
the 3-dimensional hyperbolic plane H3 if and only if it is a hyperbolic group whose
boundary is homeomorphic to S2. Provided that the infinite hyperbolic group G oc-
curs as the fundamental group of a closed irreducible 3-manifold, Bestvina-Mess [11,
Theorem 4.1] have shown that its universal covering is homeomorphic to R3 and its
compactification by ∂G is homeomorphic to D3, and the Geometrization Conjecture
of Thurston implies that M is hyperbolic and G satisfies Cannon’s conjecture. The
problem is solved in the case n = 2, namely, for a hyperbolic group G its boundary
∂G is homeomorphic to S1 if and only if G is a Fuchsian group (see [14, 33, 35]).

11. L2-invariants

Next we mention some prominent conjectures about aspherical closed manifolds
and L2-invariants of their universal coverings. For more information about these
conjectures and their status we refer to [56] and [57].

11.1. The Hopf and the Singer Conjectures.

Conjecture 11.1 (Hopf Conjecture). If M is an aspherical closed manifold of even
dimension, then

(−1)dim(M)/2 · χ(M) ≥ 0.
If M is a closed Riemannian manifold of even dimension with sectional curvature
sec(M), then

(−1)dim(M)/2 · χ(M) > 0 if sec(M) < 0;
(−1)dim(M)/2 · χ(M) ≥ 0 if sec(M) ≤ 0;

χ(M) = 0 if sec(M) = 0;
χ(M) ≥ 0 if sec(M) ≥ 0;
χ(M) > 0 if sec(M) > 0.

Conjecture 11.2 (Singer Conjecture). If M is an aspherical closed manifold, then
b(2)
n (M̃) = 0 if 2n 6= dim(M).

If M is a closed connected Riemannian manifold with negative sectional curvature,
then

b(2)
n (M̃)

{
= 0 if 2n 6= dim(M);
> 0 if 2n = dim(M).

11.2. L2–torsion and aspherical closed manifolds.

Conjecture 11.3 (L2-torsion for aspherical closed manifolds). IfM is an aspherical
closed manifold of odd dimension, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) ≥ 0.
If M is a closed connected Riemannian manifold of odd dimension with negative
sectional curvature, then M̃ is det-L2-acyclic and

(−1)
dim(M)−1

2 · ρ(2)(M̃) > 0.
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IfM is an aspherical closed manifold whose fundamental group contains an amenable
infinite normal subgroup, then M̃ is det-L2-acyclic and

ρ(2)(M̃) = 0.
11.3. Homological growth and L2-torsion for closed aspherical manifolds.
The following conjecture is motivated by [56, Conjecture 11.3 on page 418] and in
particular by the preprint of Bergeron and Venkatesh [10, Conjecture 1.3].
Conjecture 11.4 (Homological growth and L2-torsion for aspherical manifolds).
Let M be a closed aspherical manifold of dimension n. Let

π1(M) = G0 ⊇ G1 ⊇ G1 ⊇ · · ·
be a nested sequence of in G normal subgroups of finite index [G : Gi] such that
their intersection ⋂i≥0 Gi is the trivial subgroup. Then:

limi∈I
ln
(∣∣∣tors

(
Hn(Gi\M̃ ;Z)

)∣∣∣)
[G:Gi] = 0 if 2n+ 1 6= dim(M);

limi∈I
ln
(∣∣∣tors

(
Hn(Gi\M̃ ;Z)

)∣∣∣)
[G:Gi] = (−1)p · ρ(2)

(
M̃
)

if 2n+ 1 = dim(M).
If π1(M) is residually finite, then Conjecture 11.4 implies Conjecture 11.3. Con-

jecture 11.4 has been proved in the special case, where π1(M) contains an infinite
normal elementary amenable subgroup or M carries a non-trivial S1-action, in [59].
A very interesting open case is the one of a closed hyperbolic 3-manifold.

11.4. Q versus Fp-approximation.
Conjecture 11.5 (Approximation by Betti numbers). LetM be a closed aspherical
manifold of dimension n. Let

π1(M) = G0 ⊇ G1 ⊇ G1 ⊇ · · ·
be a nested sequence of in G normal subgroups of finite index [G : Gi] such that
their intersection ⋂i≥0 Gi is the trivial subgroup. Let K be any field. Then we get
for every n ≥ 0

b(2)
n (M̃) = lim

i→∞

bn(Gi\M̃ ;K)
[G : Gi]

.

Remark 11.6. Conjecture 11.5 follows from [55] in the case that K has characteris-
tic zero, actually without the assumption that M is aspherical. The interesting and
open case is the case of the prime characteristic p, where the assumption ‘aspherical’
is definitely necessary, see for instance [9], [22] and [53], and one may additionally
demand that each index [G : Gi] is a p-power.
11.5. Simplicial volume and L2-invariants.
Conjecture 11.7 (Simplicial volume and L2-invariants). Let M be an aspherical
closed orientable manifold. Suppose that its simplicial volume ||M || vanishes. Then
M̃ is of determinant class and

b(2)
n (M̃) = 0 for n ≥ 0;
ρ(2)(M̃) = 0.
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11.6. The Zero-in-the-Spectrum Conjecture.

Conjecture 11.8 (Zero-in-the-spectrum Conjecture). Let M̃ be a complete Rie-
mannian manifold. Suppose that M̃ is the universal covering of an aspherical closed
Riemannian manifold M (with the Riemannian metric coming from M). Then for
some p ≥ 0 zero is in the Spectrum of the minimal closure

(∆p)min : dom
(
(∆p)min

)
⊂ L2Ωp(M̃)→ L2Ωp(M̃)

of the Laplacian acting on smooth p-forms on M̃ .

Remark 11.9 (Non-aspherical counterexamples to the Zero-in-the-Spectrum Con-
jecture). For all of the conjectures about aspherical spaces stated in this article it is
obvious that they cannot be true if one drops the condition aspherical except for the
zero-in-the-Spectrum Conjecture 11.8. Farber and Weinberger [23] gave the first ex-
ample of a closed Riemannian manifold for which zero is not in the spectrum of the
minimal closure (∆p)min : dom ((∆p)min) ⊂ L2Ωp(M̃) → L2Ωp(M̃) of the Laplacian
acting on smooth p-forms on M̃ for each p ≥ 0. The construction by Higson, Roe
and Schick [43] yields plenty of such counterexamples. But there are no aspherical
counterexamples known.
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