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Complex bordism*

TARAS PANOV

Abstract. We give the basic definitions for the complex bordism groups of man-
ifolds and survey some foundational results in the subject.
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1. Introduction

Complex bordism (also known as unitary bordism) is the bordism theory of stably
complex manifolds (see Section 2). It is one of the most important theories of
bordism with additional structure, or B-bordism.

The theory of complex bordism is much richer than its unoriented analogue, and
at the same time is not as complicated as oriented bordism or other bordism theories
with additional structure (B-bordism). Thanks to this, complex cobordism theory
has found the most striking and important applications in algebraic topology and
beyond. Many of these applications, including the formal group techniques and the
Adams-Novikov spectral sequence (see Section 7) were outlined in the pioneering
work [10].

2. Stably complex structures

A direct attempt to define the bordism relation on complex manifolds fails because
the manifold W is odd-dimensional and therefore cannot be complex. In order to
work with complex manifolds in the bordism theory, one needs to weaken the notion
of a complex structure. This leads directly to considering stably complex (also known
as weakly almost complex, stably almost complex or quasicomplex) manifolds.

Let TM denote the tangent bundle of M , and Rk the product vector bundle
M × Rk over M . A tangential stably complex structure on M is determined by a
choice of an isomorphism

cT : TM ⊕ Rk → ξ

between the ‘stable’ tangent bundle and a complex vector bundle ξ over M . Some
of the choices of such isomorphisms are deemed to be equivalent, i.e. determine
the same stably complex structures (see details in Chapters II and VII of [14]). In
particular, two stably complex structures are equivalent if they differ by a trivial
complex summand. A normal stably complex structure on M is determined by a
choice of a complex bundle structure on the normal bundle ν(M) of an embedding
M ↪→ RN . Tangential and normal stably complex structures on M determine each
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other by means of the canonical isomorphism TM ⊕ ν(M) ∼= RN . We therefore may
restrict our attention to tangential structures only.

A stably complex manifold is a pair (M, cT ) consisting of a manifold M and a
stably complex structure cT on it. This is a generalisation of a complex and almost
complex manifold (where the latter means a manifold with a choice of a complex
structure on TM , i.e. a stably complex structure cT with k = 0).

Example 2.1. Let M = CP 1. The standard complex structure on M is equivalent
to the stably complex structure determined by the isomorphism

T (CP 1)⊕ R2 ∼=−→ η ⊕ η
where η is the Hopf line bundle. On the other hand, the isomorphism

T (CP 1)⊕ R2 ∼=−→ η ⊕ η ∼= C2

determines a trivial stably complex structure on CP 1.

3. Definition of bordism and cobordism

The bordism relation can be defined between stably complex manifolds. Like the
case of unoriented bordism, the set of bordism classes [M, cT ] of stably complex
manifolds of dimension n is an Abelian group with respect to the disjoint union.
This group is called the n-dimensional complex bordism group and denoted ΩU

n .
The zero element is represented by the bordism class of any manifold M which
bounds and whose stable tangent bundle is trivial (and therefore isomorphic to a
product complex vector bundle M × Ck). The sphere Sn provides an example of
such a manifold. The opposite element to the bordism class [M, cT ] in the group
ΩU

n may be represented by the same manifold M with the stably complex structure
determined by the isomorphism

TM ⊕ Rk ⊕ R2
cT ⊕e

−−−→ ξ ⊕ C
where e : R2 → C is given by e(x, y) = x− iy.

An abbreviated notation [M ] for the complex bordism class will be used whenever
the stably complex structure cT is clear from the context.

The complex bordism group Un(X) and cobordism group Un(X) of a space X may
also be defined geometrically, at least for the case when X is a manifold. This
can be done along the lines suggested by [11] and [6] by considering special ‘stably
complex’ maps of manifoldsM to X. However, nowadays the homotopical approach
to bordism has taken over, and the (co)bordism groups are usually defined using the
Pontrjagin-Thom construction similarly to the unoriented case:

Un(X) = lim
k→∞

π2k+n((X+) ∧MU(k)),

Un(X) = lim
k→∞

[Σ2k−n(X+),MU(k)]

where MU(k) is the Thom space of the universal complex k-plane bundle EU(k)→
BU(k), and [X, Y ] denotes the set of homotopy classes of pointed maps from X to
Y . These groups are ΩU

∗ -modules and give rise to a multiplicative (co)homology
theory. In particular, U∗(X) = ⊕nU

n(X) is a graded ring.
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The graded ring Ω∗U with Ωn
U = ΩU

−n is called the complex cobordism ring; it has
nontrivial elements only in nonpositively graded components.

4. Geometric cobordisms

There is one important case when certain cobordism classes can be represented
very explicitly by maps of manifolds.

For any cell complex X the cohomology group H2(X) can be identified with the
set [X,CP∞] of homotopy classes of maps into CP∞. Since CP∞ = MU(1), every
element x ∈ H2(X) also determines a cobordism class ux ∈ U2(X). The elements
of U2(X) obtained in this way are called geometric cobordisms of X. We therefore
may view H2(X) as a subset in U2(X), however the group operation in H2(X) is
not obtained by restricting the group operation in U2(X) (see Formal group laws
and genera for the relationship between the two operations).

When X is a manifold, geometric cobordisms may be described by submanifolds
M ⊂ X of codimension 2 with a fixed complex structure on the normal bundle.

Indeed, every x ∈ H2(X) corresponds to a homotopy class of maps fx : X →
CP∞. The image fx(X) is contained in some CPN ⊂ CP∞, and we may assume
that fx(X) is transverse to a certain hyperplane H ⊂ CPN . Then Mx := f−1

x (H)
is a codimension 2 submanifold in X whose normal bundle acquires a complex
structure by restriction of the complex structure on the normal bundle of H ⊂ CPN .
Changing the map fx within its homotopy class does not affect the bordism class of
the embedding Mx → X.

Conversely, assume given a submanifold M ⊂ X of codimension 2 whose normal
bundle is endowed with a complex structure. Then the composition

X →M(ν)→MU(1) = CP∞

of the Pontrjagin-Thom collapse map X → M(ν) and the map of Thom spaces
corresponding to the classifying map M → BU(1) of ν defines an element xM ∈
H2(X), and therefore a geometric cobordism.

If X is an oriented manifold, then a choice of complex structure on the normal
bundle of a codimension 2 embedding M ⊂ X is equivalent to orienting M . The
image of the fundamental class of M in the homology of X is Poincaré dual to
xM ∈ H2(X).

5. Structure results

The complex bordism ring ΩU
∗ is described as follows.

Theorem 5.1. (1) ΩU
∗ ⊗Q is a polynomial ring over Q generated by the bordism

classes of complex projective spaces CP i, i > 1.
(2) Two stably complex manifolds are bordant if and only if they have identical

sets of Chern characteristic numbers.
(3) ΩU

∗ is a polynomial ring over Z with one generator ai in every even dimension
2i, where i > 1.

Part 1 can be proved by the methods of [15]. Part 2 follows from the results of [7]
and [8]. Part 3 is the most difficult one; it was done by [8] using the Adams spectral
sequence and structure theory of Hopf algebras (see also [9] for a more detailed
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account) and Milnor (unpublished, but see [16]) in 1960. Another more geometric
proof was given by [13], see also [14].

6. Multiplicative generators

6.1. Preliminaries: characteristic numbers detecting generators. To describe
a set of multiplicative generators for the ring ΩU

∗ we shall need a special character-
istic class of complex vector bundles. Let ξ be a complex k-plane bundle over a
manifold M . Write its total Chern class formally as follows:

c(ξ) = 1 + c1(ξ) + · · ·+ ck(ξ) = (1 + x1) · · · (1 + xk),
so that ci(ξ) = σi(x1, . . . , xk) is the ith elementary symmetric function in formal
indeterminates. These indeterminates acquire a geometric meaning if ξ is a sum
ξ1 ⊕ · · · ⊕ ξk of line bundles; then xj = c1(ξj), 1 6 j 6 k. Consider the polynomial

Pn(x1, . . . xk) = xn
1 + · · ·+ xn

k

and express it via the elementary symmetric functions:
Pn(x1, . . . , xk) = sn(σ1, . . . , σk).

Substituting the Chern classes for the elementary symmetric functions we obtain a
certain characteristic class of ξ:

sn(ξ) = sn(c1(ξ), . . . , ck(ξ)) ∈ H2n(M).
This characteristic class plays an important role in detecting the polynomial gen-

erators of the complex bordism ring, because of the following properties (which
follow immediately from the definition).
Proposition 6.1. (1) sn(ξ) = 0 for 2n > dimM .

(2) sn(ξ ⊕ η) = sn(ξ) + sn(η).
Given a stably complex manifold (M, cT ) of dimension 2n, define its characteristic

number
sn[M ] = sn(ξ)〈M〉 ∈ Z

where ξ is the complex bundle from the definition of stably complex structure in
Section 2, and 〈M〉 ∈ H2n(M) the fundamental homology class.
Corollary 6.2. If a bordism class [M ] ∈ ΩU

2n decomposes as [M1] × [M2] where
dimM1 > 0 and dimM2 > 0, then sn[M ] = 0.

It follows that the characteristic number sn vanishes on decomposable elements of
ΩU

2n. It also detects indecomposables that may be chosen as polynomial generators.
In fact, the following result is a byproduct of the calculation of ΩU

∗ :
Theorem 6.3. A bordism class [M ] ∈ ΩU

2n may be chosen as a polynomial generator
an of the ring ΩU

∗ if and only if

sn[M ] =

±1, if n 6= pk − 1 for any prime p;
±p, if n = pk − 1 for some prime p.

(Ed Floyd was fond of calling the characteristic numbers sn[M ] the ‘magic num-
bers’ of manifolds.)
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6.2. Milnor hypersurfaces. A universal description of connected manifolds repre-
senting the polynomial generators an ∈ ΩU

∗ is unknown. Still, there is a particularly
nice family of manifolds whose bordism classes generate the whole ring ΩU

∗ . This
family is redundant though, so there are algebraic relations between their bordism
classes.

Fix a pair of integers j > i > 0 and consider the product CP i×CP j. Its algebraic
subvariety

Hij = {(z0 : . . . : zi)× (w0 : . . . : wj) ∈ CP i × CP j : z0w0 + · · ·+ ziwi = 0}
is called a Milnor hypersurface. Note that H0j

∼= CP j−1.
The Milnor hypersurface Hij may be identified with the set of pairs (l, α), where l

is a line in Ci+1 and α is a hyperplane in Cj+1 containing l. The projection (l, α) 7→ l
describes Hij as the total space of a bundle over CP i with fibre CP j−1.

Denote by p1 and p2 the projections of CP i×CP j onto the first and second factors
respectively, and by η the Hopf line bundle over a complex projective space; then η̄
is the hyperplane section bundle. We have

H∗(CP i × CP j) = Z[x, y]/(xi+1 = 0, yj+1 = 0)
where x = p∗1c1(η̄), y = p∗2c1(η̄).

Proposition 6.4. The geometric cobordism in CP i × CP j corresponding to the
element x+y ∈ H2(CP i×CP j) is represented by the submanifold Hij. In particular,
the image of the fundamental class 〈Hij〉 in H2(i+j−1)(CP i × CP j) is Poincaré dual
to x+ y.

Proof. We have x+ y = c1(p∗1(η̄)⊗ p∗2(η̄)). The classifying map fx+y : CP i×CP j →
CP∞ is the composition of the Segre embedding

σ : CP i × CP j → CP ij+i+j,

(z0 : . . . : zi)× (w0 : . . . : wj) 7→ (z0w0 : z0w1 : . . . : zkwl : . . . : ziwj),

and the embedding CP ij+i+j → CP∞. The codimension 2 submanifold in CP i×CP j

corresponding to the cohomology class x+y is obtained as the inverse image σ−1(H)
of a generally positioned hyperplane in CP ij+i+j (i.e. a hyperplane H transverse to
the image of the Segre embedding). By its definition, the Milnor hypersurface is
exactly σ−1(H) for one of such hyperplanes H. �

Lemma 6.5. We have

si+j−1[Hij] =


j, if i = 0, i.e. Hij = CP j−1;
2, if i = j = 1;
0, if i = 1, j > 1;
−
(

i+j
i

)
, if i > 1.

Proof. Let i = 0. Since the stably complex structure on H0j = CP j−1 is determined
by the isomorphism T (CP j−1)⊕ C ∼= η̄ ⊕ . . .⊕ η̄ (j summands) and x = c1(η̄), we
have

sj−1[CP j−1] = jxj−1〈CP j−1〉 = j.
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Now let i > 0. Then

si+j−1(T (CP i×CP j)) = (i+1)xi+j−1 +(j+1)yi+j−1 =

2xj + (j + 1)yj, if i = 1;
0, if i > 1.

Denote by ν the normal bundle of the embedding ι : Hij → CP i × CP j. Then

T (Hij)⊕ ν = ι∗(T (CP i × CP j)).
Since c1(ν) = ι∗(x+ y), we obtain si+j−1(ν) = ι∗(x+ y)i+j−1.

Assume i = 1. Then by the previous Proposition,
sj[H1j] = sj(T (H1j))〈H1j〉 = ι∗(2xj + (j + 1)yj − (x+ y)j)〈H1j〉

= (2xj + (j + 1)yj − (x+ y)j)(x+ y)〈CP 1 × CP j〉

=

2, if j = 1;
0, if j > 1.

Assume now that i > 1. Then si+j−1(T (CP i × CP j)) = 0, and by the previous
Proposition,

si+j−1[Hij] = −si+j−1(ν)〈Hij〉 = −ι∗(x+ y)i+j−1〈Hij〉

= −(x+ y)i+j〈CP i × CP j〉 = −
(
i+ j

i

)
,

which finishes the proof of the Lemma. �

Theorem 6.6. The bordism classes {[Hij], 0 6 i 6 j} multiplicatively generate the
complex bordism ring ΩU

∗ .

Proof. This follows from the fact that

g.c.d.
((

n+1
i

)
, 1 6 i 6 n

)
=

p, if n = pk − 1,
1, otherwise,

and the previous Lemma. �

Example 6.7. We list some bordism groups and generators:
• ΩU

2i+1 = 0;
• ΩU

0 = Z, generated by a point;
• ΩU

2 = Z, generated by [CP 1], as 1 = 21 − 1 and s1[CP 1] = 2;
• ΩU

4 = Z ⊕ Z, generated by [CP 1 × CP 1] and [CP 2], as 2 = 31 − 1 and
s2[CP 2] = 3;
• [CP 3] cannot be taken as the polynomial generator a3 ∈ ΩU

6 , since s3[CP 3] =
4, while s3(a3) = ±2. The bordism class [H22] + [CP 3] may be taken as a3.

The previous theorem about the multiplicative generators for ΩU
∗ has the following

important addendum.

Theorem 6.8 (Milnor). Every bordism class x ∈ ΩU
n with n > 0 contains a non-

singular algebraic variety (not necessarily connected).
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(The Milnor hypersufaces are algebraic, but one also needs to represent −[Hij] by
algebraic varieties!) For the proof see Chapter 7 of [14].

The following question is still open, even in complex dimension 2.

Problem 6.9 (Hirzebruch). Describe the set of bordism classes in ΩU
∗ containing

connected nonsingular algebraic varieties.

Example 6.10. Every class k[CP 1] ∈ ΩU
2 contains a nonsingular algebraic variety,

namely, a disjoint union of k copies of CP 1 for k > 0 and a Riemannian surface of
genus (1 − k) for k 6 0. Connected algebraic varieties are only contained in the
bordism classes k[CP 1] with k 6 1.

6.3. Toric generators and quasitoric representatives in cobordism classes.
There is an alternative set of multiplicative generators {[Bij], 0 6 i 6 j} for the
complex bordism ring ΩU

∗ , consisting of nonsingular projective toric varieties, or
toric manifolds. Every Bij therefore supports an effective action of a ‘big torus’
(of dimension half the dimension of the manifold) with isolated fixed points. The
construction of Bij is due to [4] (see also [3] and [2]).

The Milnor hypersurfaces Hij (see Section 6.2) are not toric manifolds for i > 1,
because of a simple cohomological obstruction (see Proposition 5.43 in [3]).

The manifold Bij is constructed as the projectivisation of a sum of j line bundles
over the bounded flag manifold Bi.

A bounded flag in Cn+1 is a complete flag

U = {U1 ⊂ U2 ⊂ . . . ⊂ Un+1 = Cn+1, dimUi = i}

for which Uk, 2 6 k 6 n, contains the coordinate subspace Ck−1 spanned by the
first k − 1 standard basis vectors.

The set Bn of all bounded flags in Cn+1 is a smooth complex algebraic variety of
dimension n (cf. [4]), referred to as the bounded flag manifold. The action of the
algebraic torus (C×)n on Cn+1 given by

(t1, . . . , tn) · (w1, . . . , wn, wn+1) = (t1w1, . . . , tnwn, wn+1),

where (t1, . . . , tn) ∈ (C×)n and (w1, . . . , wn, wn+1) ∈ Cn+1, induces an action on
bounded flags, and therefore endows Bn with a structure of a toric manifold.
Bn is also the total space of a Bott tower, that is, a tower of fibrations with base

CP 1 and fibres CP 1 in which every stage is the projectivisation of a sum of two line
bundles. In particular, B2 is the Hirzebruch surface H1.

The manifold Bij (0 6 i 6 j) consists of pairs (U ,W ), where U is a bounded flag
in Ci+1 and W is a line in U⊥1 ⊕Cj−i. (Here U⊥1 denotes the orthogonal complement
to U1 in Ci+1, so that U⊥1 ⊕ Cj−i is the orthogonal complement to U1 in Cj+1.)
Therefore, Bij is the total space of a bundle over Bi with fibre CP j−1. This bundle
is in fact the projectivisation of a sum of j line bundles, which implies that Bij is a
complex 2(i+ j − 1)-dimensional toric manifold.

The bundle Bij → Bi is the pullback of the bundle Hij → CP i along the map
f : Bi → CP i taking a bounded flag U to its first line U1 ⊂ Ci+1. This is described
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by the diagram
Bij −→ Hij

↓ ↓
Bi

f−→ CP i

.

(The bundle Hij → CP i, unlike Bij → Bi, is not a projectivisation of a sum of line
bundles, which prevents the torus action on CP i from lifting to an action on the
total space.)

Lemma 6.11. We have si+j−1[Bij] = si+j−1[Hij].

Proof. We may assume that j > 1, as otherwise Bij = Hij = CP1. We have the
equality Hij = CP(ξ), the projectivisation of a j-plane bundle ξ over CPi. We also
have that the map f : Bi → CPi has degree 1 since it is an isomorphism on the affine
chart {U ∈ Bi : U1 6⊂ Ci}. Furthermore, Bij = CP(f ∗ξ). The result now follows
from Lemma 6.12 below.

�

Lemma 6.12. Let f : M → N be a degree d map of 2i-dimensional almost complex
manifolds, and let ξ be a complex j-plane bundle over N , j > 1. Then

si+j−1[CP (f ∗ξ)] = d · si+j−1[CP (ξ)].

Proof. Let p : CP (ξ)→ N be the projection, γ the tautological bundle over CP (ξ),
and γ⊥ the complementary bundle, so that γ ⊕ γ⊥ = p∗(ξ). Then we have

T (CP (ξ)) = p∗TN ⊕ TF (CP (ξ)),

where TF (CP (ξ)) is the tangent bundle along the fibres of the projection p. Since
TF (CP (ξ)) = Hom(γ, γ⊥) and Hom(γ, γ) = C (a trivial complex line bundle), we
obtain

TF (CP (ξ))⊕ C = Hom(γ, γ ⊕ γ⊥).

Therefore,
(1)
T (CP (ξ))⊕C = p∗TN⊕Hom(γ, γ⊕γ⊥) = p∗TN⊕Hom(γ, p∗ξ) = p∗TN⊕(γ̄⊗p∗ξ),

where γ̄ = Hom(γ,C).
The map f induces the map F : CP (f ∗ξ)→ CP (ξ) with the following properties:
(a) pF = fp1, where p1 : CP (f ∗ξ)→M is the projection;
(b) degF = deg f ;
(c) F ∗γ is the tautological bundle over CP (f ∗ξ).

Using (1), we obtain

si+j−1
(
T (CP (ξ))

)
= p∗si+j−1(TN) + si+j−1(γ̄ ⊗ p∗ξ) = si+j−1(γ̄ ⊗ p∗ξ)
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(since i+ j − 1 > i), and similarly for T (CP (f ∗ξ)). Thus,

si+j−1[CP (f ∗ξ)] = si+j−1
(
T (CP (f ∗ξ))

)〈
CP (f ∗ξ)

〉
= si+j−1

(
(F ∗γ̄)⊗ p∗1f ∗ξ

)〈
CP (f ∗ξ)

〉
= si+j−1

(
F ∗(γ̄ ⊗ p∗ξ)

)〈
CP (f ∗ξ)

〉
= si+j−1(γ̄ ⊗ p∗ξ)〈F∗CP (f ∗ξ)〉
= si+j−1(γ̄ ⊗ p∗ξ)〈d · CP (ξ)〉
= d · si+j−1[CP (ξ)].

�

The proof of Lemma 6.11. We note that the map f : Bi → CP i has degree 1. (It is
an isomorphism on the affine chart {U ∈ Bi : U1 6⊂ Ci}.) �

Theorem 6.13 (Buchstaber and Ray [4]). The bordism classes of toric manifolds
{[Bij], 0 6 i 6 j} multiplicatively generate the complex bordism ring ΩU

∗ . Therefore,
every complex bordism class contains a disjoint union of toric manifolds.

Proof. The first statement follows from the fact that the Milnor hypersurfaces gener-
ate the complex bordism ring and the previous Lemma. A product of toric manifolds
is toric, but a disjoint union of toric manifolds is not a toric manifold, since toric
manifolds are connected by definition. �

The manifolds Hij and Bij are not bordant in general, although H0j = B0j =
CP j−1 and H1j = B1j by definition.

Connected representatives in cobordism classes cannot be found within toric man-
ifolds because of severe restrictions on their characteristic numbers. (For example,
the Todd genus of every toric manifold is 1.) A topological generalisation of toric
manifolds was suggested in [5] (see also [3]). These manifolds have become known
as quasitoric. A quasitoric manifold is a smooth manifold of dimension 2n with a
locally standard action of an n-dimensional torus whose quotient is a simple poly-
tope. Quasitoric manifolds generally fail to be complex or even almost complex, but
they always admit stably complex structures [4].

Theorem 6.14 (Buchstaber, Panov and Ray [2]). In dimensions > 2, every complex
cobordism class contains a quasitoric manifold, necessarily connected, whose stably
complex structure is compatible with the action of the torus.

7. Adams-Novikov spectral sequence

A principal motivation for [10] was to develop a version of the Adams spectral
sequence in which mod p cohomology (and the Steenrod algebra) are replaced by
complex cobordism theory (and its ring of stable cohomology operations), for the
purpose of computing stable homotopy groups. The foundations for the Adams-
Novikov spectral sequence were laid in this paper, and many applications and com-
putations have followed. An introduction to the work of Novikov on complex cobor-
dism is given in [1]. The most comprehensive study of the Adams-Novikov spectral
sequence is [12], currently available in a second edition from AMS/Chelsea.
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