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Bordism*

TARAS PANOV

Abstract. We give the basic definitions for the bordism groups of manifolds and
survey some foundational results in the subject.

55N22, 57R77

1. Introduction

The theory of bordism is one of the most deep and influential parts of algebraic
topology. The foundations of bordism were laid in the pioneering works of Pontrjagin
[6] and Thom [8], and the theory experienced a spectacular development in the
1960s. In particular, Atiyah [1] showed that bordism is a generalised homology
theory and related it to the emergent K-theory. The main introductory reference is
the monograph [7].

Basic geometric constructions of bordism and cobordism, as well as homotopical
definitions are summarised here. For more information, see the pages in the Bordism
category of the Manifold Atlas.

2. The bordism relation

All manifolds here are assumed to be smooth, compact and closed (without bound-
ary), unless otherwise specified. Given two n-dimensional manifolds M1 and M2, a
bordism between them is an (n+ 1)-dimensional manifold W with boundary, whose
boundary is the disjoint union of M1 and M2, that is, ∂W = M1 tM2. If such a
W exists, M1 and M2 are called bordant. The bordism relation splits manifolds into
equivalence classes (see Figure 1), which are called bordism classes.

3. Unoriented bordism

We denote the bordism class of M by [M ], and denote by ΩO
n the set of bordism

classes of n-dimensional manifolds. Then ΩO
n is an abelian group with respect to

the disjoint union operation: [M1] + [M2] = [M1 tM2]. Zero is represented by the
bordism class of an empty set (which is counted as a manifold in any dimension), or
by the bordism class of any manifold which bounds. We also have ∂(M×I) = MtM .
Hence, 2[M ] = 0 and ΩO

n is a 2-torsion group.
Set ΩO

∗ := ⊕
n≥0 Ω

O
n . The product of bordism classes, namely [M1] × [M2] =

[M1 ×M2], makes ΩO
∗ a graded commutative ring known as the unoriented bordism

ring.

*Atlas page: www.map.mpim-bonn.mpg.de/Bordism
Keywords: formal group law, bordism theory

Accepted: 4th January 2011



2 Taras Panov

Figure 1. Transitivity of the bordism relation

For any space X the bordism relation can be extended to maps of n-dimensional
manifolds to X: two maps M1 → X and M2 → X are bordant if there is a bordism
W between M1 and M2 and the map M1 tM2 → X extends to a map W → X.
The set of bordism classes of maps M → X forms an abelian group called the n-
dimensional unoriented bordism group of X and denoted On(X) (other notations:
Nn(X), MOn(X)).

The assignment X 7→ O∗(X) defines a generalised homology theory, that is, it is
functorial in X, homotopy invariant, has the excision property and exact sequences
of pairs. For this theory we have O∗(pt) = ΩO

∗ , and O∗(X) is an ΩO
∗ -module.

The Pontrjagin-Thom construction reduces the calculation of the bordism groups
to a homotopical problem:

On(X) = lim
k→∞

πk+n

(
(X+) ∧MO(k)

)
where X+ = X t pt, and MO(k) is the Thom space of the universal vector k-plane
bundle EO(k)→ BO(k). The cobordism groups are defined dually:

On(X) = lim
k→∞

[Σk−n(X+),MO(k)]

where [X, Y ] denotes the set of based homotopy classes of maps from X to Y .
The resulting generalised cohomology theory is multiplicative, which implies that
O∗(X) = ⊕

n O
n(X) is a graded commutative ring. It follows from the definitions

that On(pt) = O−n(pt). The graded ring Ω∗O with Ω−n
O := O−n(pt) = ΩO

n is called
the unoriented cobordism ring. It has nonzero elements only in nonpositively graded
components. The bordism ring ΩO

∗ and the cobordism ring Ω∗O differ only by their
gradings, so the notions of the ‘bordism class’ and ‘cobordism class’ of a manifoldM
are interchangeable. The difference between bordism and cobordism appears only
when one considers generalised homology and cohomology theories.
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4. Oriented and complex bordism

The bordism relation may be extended to manifolds endowed with some additional
structure, which leads to the most important examples of bordism theories. The
universal homotopical framework for geometric bordism with additional structure is
provided by the theory of B-bordism.

The simplest additional structure is an orientation. By definition, two oriented
n-dimensional manifolds M1 and M2 are oriented bordant if there is an oriented
(n + 1)-dimensional manifold W with boundary such that ∂W = M1 tM2, where
M2 denotes M2 with the orientation reversed. The oriented bordism groups ΩSO

n

and the oriented bordism ring ΩSO
∗ = ⊕

n≥0 Ω
SO
n are defined accordingly. Given an

oriented manifold M , the manifold M × I has a canonical orientation such that
∂(M × I) = M tM . Hence, −[M ] = [M ] in ΩSO

n . Unlike ΩO
n , elements of ΩSO

∗
generally do not have order 2.

Complex structure gives another important example of an additional structure
on manifolds. However, a direct attempt to define the bordism relation on complex
manifolds fails because the manifold W is odd-dimensional and therefore cannot be
complex. This can be remedied by considering stably complex (also known as weakly
almost complex, stably almost complex or quasicomplex) structures.

Let TM denote the tangent bundle of M , and Rk the product vector bundle
M × Rk over M . A tangential stably complex structure on M is determined by a
choice of an isomorphism

cT : TM ⊕ Rk → ξ

between the ‘stable’ tangent bundle and a complex vector bundle ξ over M . Some
of the choices of such isomorphisms are deemed to be equivalent, i.e. determine
the same stably complex structures (see details in Chapters II and VII of [7]). In
particular, two stably complex structures are equivalent if they differ by a trivial
complex summand. A normal stably complex structure on M is determined by a
choice of a complex bundle structure on the normal bundle ν(M) of an embedding
M ↪→ RN . Tangential and normal stably complex structures on M determine each
other by means of the canonical isomorphism TM ⊕ ν(M) ∼= RN . We therefore may
restrict our attention to tangential structures only.

A stably complex manifold is a pair (M, cT ) consisting of a manifold M and a
stably complex structure cT on it. This is a generalisation of a complex and almost
complex manifold (where the latter means a manifold with a choice of a complex
structure on TM , i.e. a stably complex structure cT with k = 0).

Example 4.1. Let M = CP 1. The standard complex structure on M is equivalent
to the stably complex structure determined by the isomorphism

T (CP 1)⊕ R2 ∼=−→ η ⊕ η

where η is the Hopf line bundle. On the other hand, the isomorphism

T (CP 1)⊕ R2 ∼=−→ η ⊕ η ∼= C2

determines a trivial stably complex structure on CP 1.
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The bordism relation can be defined between stably complex manifolds. Like
the case of unoriented bordism, the set of bordism classes [M, cT ] of n-dimensional
stably complex manifolds is an Abelian group with respect to the disjoint union.
This group is called the n-dimensional complex bordism group and denoted by ΩU

n .
The zero is represented by the bordism class of any manifold M which bounds
and whose stable tangent bundle is trivial (and therefore isomorphic to a product
complex vector bundle M × Ck). The sphere Sn provides an example of such a
manifold. The opposite element to the bordism class [M, cT ] in the group ΩU

n may be
represented by the same manifold M with the stably complex structure determined
by the isomorphism

TM ⊕ Rk ⊕ R2 cT ⊕e
−−−→ ξ ⊕ C

where e : R2 → C is given by e(x, y) = x− iy.
An abbreviated notation [M ] for the complex bordism class will be used whenever

the stably complex structure cT is clear from the context.
The complex bordism and cobordism groups of a space X are defined similarly to

the unoriented case:
Un(X) = lim

k→∞
π2k+n((X+) ∧MU(k)),

Un(X) = lim
k→∞

[Σ2k−n(X+),MU(k)]

where MU(k) is the Thom space of the universal complex k-plane bundle EU(k)→
BU(k). These groups are ΩU

∗ -modules and give rise to a multiplicative (co)homology
theory. In particular, U∗(X) = ⊕

n U
n(X) is a graded ring.

The graded ring Ω∗U with Ωn
U = ΩU

−n is called the complex cobordism ring; it has
nontrivial elements only in nonpositively graded components.

5. Connected sum and bordism

For manifolds of positive dimension the disjoint union M1 tM2 representing the
sum of bordism classes [M1]+ [M2] may be replaced by their ‘connected sum’, which
represents the same bordism class.

The connected sum M1 #M2 of manifolds M1 and M2 of the same dimension n is
constructed as follows. Choose points v1 ∈M1 and v2 ∈M2, and take closed ε-balls
Bε(v1) and Bε(v2) around them (both manifolds may be assumed to be endowed
with a Riemannian metric). Fix an isometric embedding f of a pair of standard
ε-balls Dn × S0 (here S0 = {0, 1}) into M1 tM2 which maps Dn × 0 onto Bε(v1)
and Dn × 1 onto Bε(v2). If both M1 and M2 are oriented we additionally require
the embedding f to preserve the orientation on the first ball and reverse in on the
second. Now, using this embedding, replace in M1 tM2 the pair of balls Dn × S0

by a ‘pipe’ Sn−1×D1. After smoothing the angles in the standard way we obtain a
smooth manifold M1 #M2.

If both M1 and M2 are connected the smooth structure on M1 # M2 does not
depend on a choice of points v1, v2 and embedding Dn × S0 ↪→ M1 tM2. It does
however depend on the orientations; M1 # M2 and M1 # M2 are not diffeomorphic
in general.
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Figure 2. Disjoint union and connected sum

There are smooth contraction maps p1 : M1 #M2 →M1 and p2 : M1 #M2 →M2.
In the oriented case the manifold M1 #M2 can be oriented in such a way that both
contraction maps preserve the orientations.

A bordism betweenM1tM2 andM1#M2 may be constructed as follows. Consider
a cylinderM1×I, from which we remove an ε-neighbourhood Uε(v1×1) of the point
v1 × 1. Similarly, remove the neighbourhood Uε(v2 × 1) from M2 × I (each of these
two neighbourhoods can be identified with the half of a standard open (n+ 1)-ball).
Now connect the two remainders of cylinders by a ‘half pipe’ Sn

≤ × I in such a
way that the half-sphere Sn

≤×0 is identified with the half-sphere on the boundary of
Uε(v1×1), and Sn

≤×1 is identified with the half-sphere on the boundary of Uε(v2×1).
Smoothening the angles we obtain a manifold with boundary M1 tM2 t (M1 #M2)
(or M1 tM2 t (M1 #M2) in the oriented case), see the Figure.

If M1 and M2 are stably complex manifolds, then there is a canonical stably
complex structure on M1 #M2, which is constructed as follows. Assume the stably
complex structures on M1 and M2 are determined by isomorphisms

cT,1 : TM1 ⊕ Rk1 → ξ1 and cT,2 : TM2 ⊕ Rk2 → ξ2.

Using the isomorphism T (M1 # M2) ⊕ Rn ∼= p∗1TM1 ⊕ p∗2TM2, we define a stably
complex structure on M1 #M2 by the isomorphism

T (M1 #M2)⊕ Rn+k1+k2 ∼= p∗1TM1 ⊕ Rk1 ⊕ p∗2TM2 ⊕ Rk2 cT ,1⊕cT ,2−−−−−→ p∗1ξ1 ⊕ p∗2ξ2.

This stably complex structure is called the connected sum of stably complex struc-
tures on M1 and M2. The corresponding complex bordism class is [M1] + [M2].

6. Structure results

The theory of unoriented (co)bordism was first to be completed: its coefficient
ring ΩO

∗ was calculated by Thom, and the bordism groups O∗(X) of cell complexes
X were reduced to homology groups ofX with coefficients in ΩO

∗ . The corresponding
results are summarised as follows:
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Theorem 6.1. (1) Two manifolds are unoriented bordant if and only if they
have identical sets of Stiefel-Whitney characteristic numbers.

(2) ΩO
∗ is a polynomial ring over Z/2 with one generator ai in every positive

dimension i 6= 2k − 1.
(3) For every cell complex X the module O∗(X) is a free graded ΩO

∗ -module
isomorphic to H∗(X;Z/2)⊗Z/2 Ω

O
∗ .

Parts 1 and 2 were proved in [8]. Part 3 was proved in [2].
Calculating the complex bordism ring ΩU

∗ turned out to be a much more difficult
problem:

Theorem 6.2. (1) ΩU
∗ ⊗Q is a polynomial ring over Q generated by the bordism

classes of complex projective spaces CP i, i ≥ 1.
(2) Two stably complex manifolds are bordant if and only if they have identical

sets of Chern characteristic numbers.
(3) ΩU

∗ is a polynomial ring over Z with one generator ai in every even dimension
2i, where i ≥ 1.

Part 1 can be proved by the methods of Thom. Part 2 follows from the results of
[3] and [4]. Part 3 is the most difficult one; it was done in 1960 in [4] (see also [5]
for a more detailed account) and Milnor (unpublished, but see [9]).

Note that part 3 of Theorem 6.1 does not extend to complex bordism; U∗(X) is not
a free ΩU

∗ -module in general. Unlike the case of unoriented bordism, the calculation
of complex bordism of a space X does not reduce to calculating the coefficient ring
ΩU
∗ and homology groups H∗(X).
The calculation of the oriented bordism ring was completed by [4] (ring structure

modulo torsion) and [10] (additive torsion), with important contributions made by
Rokhlin, Averbuch, and Milnor. Unlike complex bordism, the ring ΩSO

∗ has additive
torsion. We give only a partial result here, which does not fully describe the torsion
elements. For the complete description of the ring ΩSO

∗ see the Oriented bordism
page.

Theorem 6.3. (1) ΩSO
∗ ⊗Q is a polynomial ring over Q generated by the bordism

classes of complex projective spaces CP 2i, i ≥ 1.
(2) The subring Tors ⊂ ΩSO

∗ of torsion elements contains only elements of order
2. The quotient ΩSO

∗ /Tors is a polynomial ring over Z with one generator ai

in every dimension 4i, where i ≥ 1.
(3) Two oriented manifolds are bordant if and only if they have identical sets of

Pontrjagin and Stiefel-Whitney characteristic numbers.

For more specific information about the three bordism theories, including con-
structions of manifolds representing polynomial generators in the bordism rings and
applications, see the Unoriented bordism, Oriented bordism, and Complex bordism
pages.
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