Formal groups laws and genera^{*}

TARAS PANOV

ABSTRACT. The article reviews role of formal group laws in bordism theory. 55N22, 57R77

1. INTRODUCTION

The theory of *formal group laws*, which originally appeared in algebraic geometry, was brought into bordism theory in the pioneering work [9]. The applications of formal group laws in algebraic topology are closely connected with *Hirzebruch genera* [6], which are important invariants of bordism classes of manifolds.

2. Elements of the theory of formal group laws

Let R be a commutative ring with unit.

A formal power series $F(u, v) \in R[[u, v]]$ is called a (commutative one-dimensional) formal group law over R if it satisfies the following equations:

- (1) F(u,0) = u, F(0,v) = v;
- (2) F(F(u, v), w) = F(u, F(v, w));
- (3) F(u, v) = F(v, u).

The original example of a formal group law over a field \mathbf{k} is provided by the expansion near the unit of the multiplication map $G \times G \to G$ in a one-dimensional algebraic group over \mathbf{k} . This also explains the terminology.

A formal group law F over R is called *linearisable* if there exists a coordinate change $u \mapsto g_F(u) = u + \sum_{i>1} g_i u^i \in R[[u]]$ such that

$$g_F(F(u,v)) = g_F(u) + g_F(v).$$

Note that every formal group law over R determines a formal group law over $R \otimes \mathbb{Q}$.

Theorem 2.1. Every formal group law F is linearisable over $R \otimes \mathbb{Q}$.

Proof. Consider the series $\omega(u) = \frac{\partial F(u,w)}{\partial w}\Big|_{w=0}$. Then

$$\begin{split} \omega(F(u,v)) &= \frac{\partial F(F(u,v),w)}{\partial w}\Big|_{w=0} = \frac{\partial F(F(u,w),v)}{\partial F(u,w)} \cdot \frac{\partial F(u,w)}{\partial w}\Big|_{w=0} = \frac{\partial F(u,v)}{\partial u}\omega(u). \end{split}$$
 We therefore have $\frac{du}{\omega(u)} = \frac{dF(u,v)}{\omega(F(u,v))}$. Set

$$g(u) = \int_0^u \frac{dv}{\omega(v)};$$

Accepted: 4th January 2011

^{*}Atlas page: www.map.mpim-bonn.mpg.de/Formal_group_laws_and_genera Keywords: formal_group_law, bordism_theory

then dg(u) = dg(F(u, v)). This implies that g(F(u, v)) = g(u) + C. Since F(0, v) = vand g(0) = 0, we get C = g(v). Thus, g(F(u, v)) = g(u) + g(v). \Box

A series $g(u) = u + \sum_{i>1} g_i u^i$ satisfying the equation g(F(u, v)) = g(u) + g(v)is called a *logarithm* of the formal group law F; the above Theorem shows that a formal group law over $R \otimes \mathbb{Q}$ always has a logarithm. Its functional inverse series $f(t) \in R \otimes \mathbb{Q}[[t]]$ is called an *exponential* of the formal group law, so that we have F(u, v) = f(g(u) + g(v)) over $R \otimes \mathbb{Q}$. If R does not have torsion (i.e. $R \to R \otimes \mathbb{Q}$ is monic), the latter formula shows that a formal group law (as a series with coefficients in R) is fully determined by its logarithm (which is a series with coefficients in $R \otimes \mathbb{Q}$).

Let $F = \sum_{k,l} a_{kl} u^k v^l$ be a formal group law over a ring R and $r: R \to R'$ a ring homomorphism. Denote by r(F) the formal series $\sum_{k,l} r(a_{kl}) u^k v^l \in R'[[u, v]]$; then r(F) is a formal group law over R'.

A formal group law \mathcal{F} over a ring A is *universal* if for any formal group law F over any ring R there exists a unique homomorphism $r: A \to R$ such that $F = r(\mathcal{F})$.

Proposition 2.2. Assume that a universal formal group law \mathcal{F} over A exists. Then

- (1) The ring A is multiplicatively generated by the coefficients of the series \mathcal{F} ;
- (2) The universal formal group law is unique: if \mathcal{F}' is another universal formal group law over A', then there is an isomorphism $r: A \to A'$ such that $\mathcal{F}' = r(\mathcal{F})$.

Proof. To prove the first statement, denote by A' the subring in A generated by the coefficients of \mathcal{F} . Then there is a monomorphism $i: A' \to A$ satisfying $i(\mathcal{F}) = \mathcal{F}$. On the other hand, by universality there exists a homomorphism $r: A \to A'$ satisfying $r(\mathcal{F}) = \mathcal{F}$. It follows that $ir(\mathcal{F}) = \mathcal{F}$. This implies that $ir = id: A \to A$ by the uniqueness requirement in the definition of \mathcal{F} . Thus A' = A. The second statement is proved similarly.

Theorem 2.3 (Lazard [8]). The universal formal group law \mathcal{F} exists, and its coefficient ring A is isomorphic to the polynomial ring $\mathbb{Z}[a_1, a_2, \ldots]$ on an infinite number of generators.

3. Formal group law of geometric cobordisms

The applications of formal group laws in cobordism theory build upon the following basic example.

Let X be a cell complex and $u, v \in U^2(X)$ two geometric cobordisms corresponding to elements $x, y \in H^2(X)$ respectively. Denote by $u +_H v$ the geometric cobordism corresponding to the cohomology class x + y.

Proposition 3.1. The following relation holds in $U^2(X)$:

(1)
$$u +_{H} v = F_{U}(u, v) = u + v + \sum_{k \ge 1, l \ge 1} \alpha_{kl} u^{k} v^{l}$$

where the coefficients $\alpha_{kl} \in \Omega_U^{-2(k+l-1)}$ do not depend on X. The series $F_U(u,v)$ given by (1) is a formal group law over the complex bordism ring Ω_U .

Proof. We first do calculations with the universal example $X = \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$. Then

$$U^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}) = \Omega^*_U[[\underline{u}, \underline{v}]],$$

where $\underline{u}, \underline{v}$ are canonical geometric cobordisms given by the projections of the space $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$ onto its factors. We therefore have the following relation in the group $U^2(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty})$:

(2)
$$\underline{u} +_{H} \underline{v} = \sum_{k,l \ge 0} \alpha_{kl} \, \underline{u}^{k} \underline{v}^{l},$$

where $\alpha_{kl} \in \Omega_U^{-2(k+l-1)}$.

Now let the geometric cobordisms $u, v \in U^2(X)$ be given by maps $f_u, f_v: X \to \mathbb{C}P^{\infty}$ respectively. Then $u = (f_u \times f_v)^*(\underline{u}), v = (f_u \times f_v)^*(\underline{v})$ and $u +_H v = (f_u \times f_v)^*(\underline{u} +_H \underline{v})$, where $f_u \times f_v: X \to \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$. Applying the Ω^*_U -module map $(f_u \times f_v)^*$ to (2) we obtain the required formula (1). The fact that $F_U(u, v)$ is a formal group law follows directly from the properties of the group multiplication $\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty} \to \mathbb{C}P^{\infty}$.

The series $F_U(u, v)$ is called the formal group law of geometric cobordisms; nowadays it is also usually referred to as the "formal group law of complex cobordism".

The geometric cobordism $u \in U^2(X)$ is the first *Conner-Floyd Chern class* of the complex line bundle ξ over X obtained by pulling back the canonical bundle along the map $f_u: X \to \mathbb{C}P^{\infty}$. It follows that the formal group law of geometric cobordisms gives an expression of the first class $c_1^U(\xi \otimes \eta) \in U^2(X)$ of the tensor product of two complex line bundles over X in terms of the classes $u = c_1^U(\xi)$ and $v = c_1^U(\eta)$ of the factors:

$$c_1^U(\xi \otimes \eta) = F_U(u, v).$$

The coefficients of the formal group law of geometric cobordisms and its logarithm may be described geometrically by the following results.

Theorem 3.2 (Buchstaber [3]).

$$F_U(u,v) = \frac{\sum_{i,j\geq 0} [H_{ij}] u^i v^j}{\left(\sum_{r\geq 0} [\mathbb{C}P^r] u^r\right) \left(\sum_{s\geq 0} [\mathbb{C}P^s] v^s\right)},$$

where H_{ij} ($0 \le i \le j$) are Milnor hypersurfaces and $H_{ji} = H_{ij}$.

Proof. Set $X = \mathbb{C}P^i \times \mathbb{C}P^j$ in Proposition 3.1. Consider the Poincaré–Atiyah duality map $D: U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to U_{2(i+j)-2}(\mathbb{C}P^i \times \mathbb{C}P^j)$ and the map $\varepsilon: U_*(\mathbb{C}P^i \times \mathbb{C}P^j) \to U_*(pt) = \Omega^U_*$ induced by the projection $\mathbb{C}P^i \times \mathbb{C}P^j \to pt$. Then the composition

$$\varepsilon D \colon U^2(\mathbb{C}P^i \times \mathbb{C}P^j) \to \Omega^U_{2(i+j)-2}$$

takes geometric cobordisms to the bordism classes of the corresponding submanifolds. In particular, $\varepsilon D(u +_{\!_H} v) = [H_{ij}], \ \varepsilon D(u^k v^l) = [\mathbb{C}P^{i-k}][\mathbb{C}P^{j-l}]$. Applying εD to (1) we obtain

$$[H_{ij}] = \sum_{k,l} \alpha_{kl} [\mathbb{C}P^{i-k}] [\mathbb{C}P^{j-l}].$$

Therefore,

$$\sum_{i,j} [H_{ij}] u^i v^j = \left(\sum_{k,l} \alpha_{kl} u^k v^l\right) \left(\sum_{i \ge k} [\mathbb{C}P^{i-k}] u^{i-k}\right) \left(\sum_{j \ge l} [\mathbb{C}P^{j-l}] v^{j-l}\right),$$

which implies the required formula.

Bulletin of the Manifold Atlas 2011

Theorem 3.3 (Mishchenko, see [9]). The logarithm of the formal group law of geometric cobordisms is given by the series

$$g_U(u) = u + \sum_{k \ge 1} \frac{[\mathbb{C}P^k]}{k+1} u^{k+1} \in \Omega_U \otimes \mathbb{Q}[[u]].$$

Proof. We have

$$dg_U(u) = \frac{du}{\frac{\partial F_U(u,v)}{\partial v}\Big|_{v=0}}$$

Using the formula of Theorem 3.2 and the identity $H_{i0} = \mathbb{C}P^{i-1}$, we calculate

$$dg_U(u) = \frac{1 + \sum_{k>0} [\mathbb{C}P^k] u^k}{1 + \sum_{i>0} ([H_{i1}] - [\mathbb{C}P^1] [\mathbb{C}P^{i-1}]) u^i}.$$

A calculation of Chern numbers shows that $[H_{i1}] = [\mathbb{C}P^1][\mathbb{C}P^{i-1}]$. Therefore, $dg_U(u) = 1 + \sum_{k>0} [\mathbb{C}P^k] u^k$, which implies the required formula.

Using these calculations the following most important property of the formal group law F_U can be easily established:

Theorem 3.4 (Quillen [10]). The formal group law F_U of geometric cobordisms is universal.

Proof. Let \mathcal{F} be the universal formal group law over a ring A. Then there is a homomorphism $r: A \to \Omega_U$ which takes \mathcal{F} to F_U . The series \mathcal{F} , viewed as a formal group law over the ring $A \otimes \mathbb{Q}$, has the universality property for all formal group laws over \mathbb{Q} -algebras. Such a formal group law is determined by its logarithm, which is a series with leading term u. It follows that if we write the logarithm of \mathcal{F} as $\sum b_k \frac{u^{k+1}}{k+1}$ then the ring $A \otimes \mathbb{Q}$ is the polynomial ring $\mathbb{Q}[b_1, b_2, \ldots]$. By Theorem 3.3, $r(b_k) = [\mathbb{C}P^k] \in \Omega_U$. Since $\Omega_U \otimes \mathbb{Q} \cong \mathbb{Q}[[\mathbb{C}P^1], [\mathbb{C}P^2], \ldots]$, this implies that $r \otimes \mathbb{Q}$ is an isomorphism.

By the Lazard Theorem the ring A does not have torsion, so r is a monomorphism. On the other hand, Theorem 3.2 implies that the image r(A) contains the bordism classes $[H_{ij}] \in \Omega_U$, $0 \le i \le j$. Since these classes generate the whole ring Ω_U , the map r is onto and thus an isomorphism.

The earliest applications of formal group laws in cobordism concerned finite group actions on manifolds, or "differentiable periodic maps", see [9], [2], [1]. For instance, a theorem of [9] describes the complex cobordism ring of the classifying space of the group \mathbb{Z}/p as

$$U^*(B\mathbb{Z}/p) \cong \Omega_U[[u]]/[u]_p,$$

where $\Omega_U[[u]]$ denotes the ring of power series in one generator u of degree 2 with coefficients in Ω_U , and $[u]_p$ denotes the pth power in the formal group law of geometric cobordisms. This result extended and unified many earlier calculations of bordism with \mathbb{Z}/p -actions from [4].

The universality of the formal group law of geometric cobordisms has important consequences for the stable homotopy theory: it implies that complex bordism is the universal complex oriented homology theory.

4. HIRZEBRUCH GENERA

Every homomorphism $\varphi \colon \Omega_U \to R$ from the complex cobordism ring to a commutative ring R with unit can be regarded as a multiplicative characteristic of manifolds which is an invariant of cobordism classes. Such a homomorphism is called a (complex) *R*-genus. (The term 'multiplicative genus' is also used, to emphasise that such a genus is a ring homomorphism; in classical algebraic geometry, there are instances of genera which are not multiplicative.)

Assume that the ring R does not have additive torsion. Then every R-genus φ is fully determined by the corresponding homomorphism $\Omega_U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$, which we shall also denote by φ . The following famous construction of [6] allows us to describe homomorphisms $\varphi \colon \Omega_U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ by means of universal R-valued characteristic classes of special type.

4.1. Construction. Let $BU = \lim_{n \to \infty} BU(n)$. Then $H^*(BU)$ is isomorphic to the graded ring of formal power series $\mathbb{Z}[[c_1, c_2, \ldots]]$ in universal Chern classes, deg $c_k = 2k$. The set of Chern characteristic numbers of a manifold M defines an element in $\operatorname{Hom}(H^*(BU), \mathbb{Z})$, which in fact belongs to the subgroup $H_*(BU)$ in the latter group. We therefore obtain a group homomorphism

$$\Omega_U \to H_*(BU).$$

Since the multiplication in the ring $H_*(BU)$ is obtained from the maps $BU_k \times BU_l \to BU_{k+l}$ corresponding to the Whitney sum of vector bundles, and the Chern classes have the appropriate multiplicative property, $\Omega_U \to H_*(BU)$ is a ring homomorphism.

Part 2 of the structure theorem for complex bordism says that $\Omega_U \to H_*(BU)$ is a monomorphism, and Part 1 of the same theorem says that the corresponding \mathbb{Q} map $\Omega_U \otimes \mathbb{Q} \to H_*(BU; \mathbb{Q})$ is an isomorphism. It follows that every homomorphism $\varphi: \Omega_U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ can be interpreted as an element of

$$\operatorname{Hom}_{\mathbb{Q}}(H_*(BU;\mathbb{Q}), R \otimes \mathbb{Q}) = H^*(BU;\mathbb{Q}) \otimes R,$$

or as a sequence of homogeneous polynomials $\{K_i(c_1, \ldots, c_i), i \geq 0\}$, deg $K_i = 2i$. This sequence of polynomials cannot be chosen arbitrarily; the fact that φ is a ring homomorphism imposes certain conditions. These conditions may be described as follows: an identity

$$1 + c_1 + c_2 + \dots = (1 + c'_1 + c'_2 + \dots) \cdot (1 + c''_1 + c''_2 + \dots)$$

implies the identity

$$\sum_{n\geq 0} K_n(c_1,\ldots,c_n) = \sum_{i\geq 0} K_i(c'_1,\ldots,c'_i) \cdot \sum_{j\geq 0} K_j(c''_1,\ldots,c''_j).$$

A sequence of homogeneous polynomials $K = \{K_i(c_1, \ldots, c_i), i \ge 0\}$ with $K_0 = 1$ satisfying these identities is called a *multiplicative Hirzebruch sequence*.

Such a multiplicative sequence K is completely determined by the series $Q(x) = 1 + q_1 x + q_2 x^2 + \cdots \in R \otimes \mathbb{Q}[[x]]$, where $x = c_1$, and $q_i = K_i(1, 0, \dots, 0)$; moreover, every series Q(x) as above determines a multiplicative sequence. Indeed, by

considering the identity

$$1 + c_1 + \dots + c_n = (1 + x_1) \cdots (1 + x_n)$$

we obtain that

 $Q(x_1)\cdots Q(x_n) = 1 + K_1(c_1) + K_2(c_1, c_2) + \cdots + K_n(c_1, \dots, c_n) + K_{n+1}(c_1, \dots, c_n, 0) + \cdots$

Along with the series Q(x) it is convenient to consider the series $f(x) \in R \otimes \mathbb{Q}[[x]]$ given by the identity

$$Q(x) = \frac{x}{f(x)}; \quad f(x) = x + f_1 x + f_2 x^2 + \cdots.$$

It follows that the ring homomorphisms $\varphi \colon \Omega_U \otimes \mathbb{Q} \to R \otimes \mathbb{Q}$ are in one-to-one correspondence with the series $f(x) \in R \otimes \mathbb{Q}[[x]]$. Under this correspondence, the value of φ on an 2*n*-dimensional bordism class $[M] \in \Omega_U$ is given by

$$\varphi[M] = \left(\prod_{i=1}^{n} \frac{x_i}{f(x_i)}, \langle M \rangle\right)$$

where one needs to plug in the Chern classes c_1, \ldots, c_n for the elementary symmetric functions in x_1, \ldots, x_n and then calculate the value of the resulting characteristic class on the fundamental class $\langle M \rangle \in H_{2n}(M)$.

The homomorphism $\varphi \colon \Omega_U \to R \otimes \mathbb{Q}$ given by the formula above is called the *Hirzebruch genus* associated to the series $f(x) = x + f_1 x + f_2 x^2 + \cdots \in R \otimes \mathbb{Q}[[x]]$. Thus, there is a one-two-one correspondence between series $f(x) \in R \otimes \mathbb{Q}[[x]]$ having leading term x and genera $\varphi \colon \Omega_U \to R \otimes \mathbb{Q}$.

We shall also denote the characteristic class $\prod_{i=1}^{n} \frac{x_i}{f(x_i)}$ of a complex vector bundle ξ by $\varphi(\xi)$; so that $\varphi[M] = \varphi(\mathcal{T}M)\langle M \rangle$.

4.2. Connection to formal group laws. Every genus $\varphi \colon \Omega_U \to R$ gives rise to a formal group law $\varphi(F_U)$ over R, where F_U is the formal group law of geometric cobordisms.

Theorem 4.1. For every genus $\varphi \colon \Omega_U \to R \otimes \mathbb{Q}$, the exponential of the formal group law $\varphi(F_U)$ is given by the series $f(x) \in R \otimes \mathbb{Q}[[x]]$ corresponding to φ .

1st proof. Let X be a manifold and $u, v \in U^2(X)$ its two geometric cobordisms defined by the elements $x, y \in H^2(X)$ respectively. By the definition of the formal group law $F_U(u, v) = u + v + \sum_{k \ge 1, l \ge 1} \alpha_{kl} u^k v^l$ we have the following relation between geometric cobordisms in $U^2(X)$:

$$[M_{x+y}] = \sum_{k,l \ge 0} \alpha_{kl} [M_{x^k y^l}]$$

in Ω_U , where $M_{x+y} \subset X$ is the codimension 2 submanifold dual to $x + y \in H^2(X)$, and $M_{x^k y^l} \subset X$ is a codimension 2(k + l) submanifold dual to $x^k y^l \in H^2(X)$. Applying the genus φ we obtain

(3)
$$\varphi[M_{x+y}] = \sum \varphi(\alpha_{kl})\varphi[M_{x^k y^l}].$$

Let $\iota: M_{x+y} \subset X$ be the embedding. Considering the decomposition

$$\iota^*(\mathcal{T}X) = \mathcal{T}M_{x+y} \oplus \nu(\iota)$$

and using the multiplicativity of the characteristic class φ we obtain

$$\iota^*\varphi(\mathcal{T}X) = \varphi(\mathcal{T}M_{x+y}) \cdot \iota^*(\frac{x+y}{f(x+y)}).$$

Therefore,

(4)
$$\varphi[M_{x+y}] = \iota^* \Big(\varphi(\mathcal{T}X) \cdot \frac{f(x+y)}{x+y} \Big) \langle M_{x+y} \rangle = \Big(\varphi(\mathcal{T}X) \cdot f(x+y) \Big) \langle X \rangle.$$

Similarly, by considering the embedding $M_{x^ky^l} \to X$ we obtain

(5)
$$\varphi[M_{x^k y^l}] = \left(\varphi(\mathcal{T}X) \cdot f(x)^k f(y)^l)\right) \langle X \rangle.$$

Plugging (4) and (5) into (3) we finally obtain

$$f(x+y) = \sum_{k,l \ge 0} \varphi(\alpha_{kl}) f(x)^k f(y)^l.$$

This implies, by definition, that f is the exponential of $\varphi(F_U)$.

2nd proof. The complex bundle isomorphism $\mathcal{T}(\mathbb{C}P^k) \oplus \underline{\mathbb{C}} = \bar{\eta} \oplus \ldots \oplus \bar{\eta} \ (k+1 \text{ summands})$ allows us to calculate the value of a genus on $\mathbb{C}P^k$ explicitly. Let $x = c_1(\bar{\eta}) \in H^2(\mathbb{C}P^k)$ and let g be the series functionally inverse to f; then

$$\varphi[\mathbb{C}P^k] = \left(\frac{x}{f(x)}\right)^{k+1} \langle \mathbb{C}P^k \rangle$$

= coefficient of x^k in $\left(\frac{x}{f(x)}\right)^{k+1} = \operatorname{res}_0 \left(\frac{1}{f(x)}\right)^{k+1}$
= $\frac{1}{2\pi i} \oint \left(\frac{1}{f(x)}\right)^{k+1} dx = \frac{1}{2\pi i} \oint \frac{1}{u^{k+1}} g'(u) du$
= $\operatorname{res}_0 \left(\frac{g'(u)}{u^{k+1}}\right)$ = coefficient of u^k in $g'(u)$.

(Integrating over a closed path around zero makes sense only for convergent power series with coefficients in \mathbb{C} , however the result holds for all power series with coefficients in $R \otimes \mathbb{Q}$.) Therefore,

$$g'(u) = \sum_{k \ge 0} \varphi[\mathbb{C}P^k] u^k.$$

This implies that g is the logarithm of the formal group law $\varphi(F_U)$, and thus f is its exponential.

A parallel theory of genera exists for oriented manifolds. These genera are homomorphisms $\Omega_{SO} \to R$ from the oriented bordism ring, and the Hirzebruch construction expresses genera over Q-algebras via certain Pontrjagin characteristic classes (which replace the Chern classes).

4.3. **Examples.** We take $R = \mathbb{Z}$ in these examples:

(1) The top Chern number $c_n(\xi)[M]$ is a Hirzebruch genus, and its corresponding f-series is $f(x) = \frac{x}{1+x}$. The value of this genus on a stably complex manifold $(M, c_{\mathcal{T}})$ equals the Euler characteristic of M if $c_{\mathcal{T}}$ is an *almost* complex structure.

Bulletin of the Manifold Atlas 2011

 \square

- (2) The *L*-genus L[M] corresponds to the series $f(x) = \tanh(x)$ (the hyperbolic tangent). It is equal to the signature of M by the classical Hirzebruch formula [6].
- (3) The *Todd genus* td[M] corresponds to the series $f(x) = 1 e^{-x}$. It takes value 1 on every complex projective space $\mathbb{C}P^k$.

The 'trivial' genus $\varepsilon \colon \Omega_U \to \mathbb{Z}$ corresponding to the series f(x) = x gives rise to the augmentation transformation $U^* \to H^*$ from complex cobordism to ordinary cohomology (also known as the *Thom homomorphism*). More generally, for every genus $\varphi \colon \Omega_U \to R$ and a space X we may set $h_{\varphi}^*(X) = U^*(X) \otimes_{\Omega_U} R$. Under certain conditions guaranteeing the exactness of the sequences of pairs (known as the Landweber exact functor theorem [7]) the functor $h_{\varphi}^*(\cdot)$ gives rise to a complexoriented cohomology theory with the coefficient ring R.

As an example of this procedure, consider a formal indeterminate β of degree -2, and let $f(x) = 1 - e^{-\beta x}$. The corresponding genus, which is also called the *Todd* genus, takes values in the ring $\mathbb{Z}[\beta]$. By interpreting β as the *Bott element* in the complex K-group $\widetilde{K}^0(S^2) = K^{-2}(pt)$ we obtain a homomorphism td: $\Omega_U^* \to K^*(pt)$. It gives rise to a multiplicative transformation $U^* \to K^*$ from complex cobordism to complex K-theory introduced by Conner and Floyd [5]. In this paper Conner and Floyd proved that complex cobordism determines complex K-theory by means of the isomorphism $K^*(X) \cong U^*(X) \otimes_{\Omega_U} \mathbb{Z}[\beta]$, where the Ω_U -module structure on $\mathbb{Z}[\beta]$ is given by the Todd genus. Their proof makes use of the Conner-Floyd Chern classes; several proofs were given subsequently, including one which follows directly from the Landweber exact functor theorem.

Another important example from the original work of Hirzebruch is given by the χ_y -genus. It corresponds to the series

$$f(x) = \frac{1 - e^{-x(1+y)}}{1 + ye^{-x(1+y)}},$$

where $y \in \mathbb{R}$ is a parameter. Setting y = -1, y = 0 and y = 1 we get the top Chern number $c_n[M]$, the Todd genus td[M] and the *L*-genus L[M] = sign(M) respectively.

If M is a complex manifold then the value $\chi_y[M]$ can be calculated in terms of the Euler characteristics of Dolbeault complexes on M.

References

- V. M. Buhštaber, A. S. Mišcenko and S. P. Novikov, Formal groups and their role in the apparatus of algebraic topology, Uspehi Mat. Nauk 26 (1971), no.2(158), 131-154. MR0445522 Zbl0226.55007
- [2] V. M. Buhštaber and S. P. Novikov, Formal groups, power systems and Adams operators, Mat. Sb. (N.S.) 84(126) (1971), 81-118. MR0291159 Zbl0239.55005
- [3] V. M. Buhštaber, The Chern-Dold character in cobordisms. I, Mat. Sb. (N.S.) 83 (125) (1970), 575-595. MR0273630 Zbl0219.57027
- [4] P. E. Conner and E. E. Floyd, *Differentiable periodic maps*, Academic Press Inc., Publishers, New York, 1964. MR0176478 Zbl0417.57019
- [5] P. E. Conner and E. E. Floyd, The relation of cobordism to K-theories, Springer-Verlag, Berlin, 1966. MR0216511 Zbl0161.42802
- [6] F. Hirzebruch, Topological methods in algebraic geometry, Springer-Verlag, New York, 1966. MR0202713 Zbl0843.14009

- [7] P. S. Landweber, Homological properties of comodules over MU_{*}(MU) and BP_{*}(BP), Amer. J. Math. 98 (1976), no.3, 591-610. MR0423332 Zbl0355.55007
- [8] M. Lazard, Sur les groupes de Lie formels à un paramétre, Bull. Soc. Math. France 83 (1955), 251-274. MR0073925 Zbl0068.25703
- S. P. Novikov, Methods of algebraic topology from the point of view of cobordism theory, Math. USSR, Izv. 1, (1967) 827–913. MR0221509 Zbl0176.52401
- [10] D. Quillen, On the formal group laws of unoriented and complex cobordism theory, Bull. Amer. Math. Soc. 75 (1969), 1293-1298. MR0253350 Zbl0199.26705

TARAS PANOV

DEPARTMENT OF GEOMETRY AND TOPOLOGY FACULTY OF MATHEMATICS AND MECHANICS MOSCOW STATE UNIVERSITY, LENINSKIE GORY 119991 MOSCOW, RUSSIA

E-mail address: panov@higeom.math.msu.su *Web address:* http://higeom.math.msu.su/people/taras/english.html