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Simplicial volume*

CLARA LÖH

Abstract. Simplicial volume is a homotopy invariant of oriented closed con-
nected manifolds introduced by Gromov in his proof of Mostow rigidity. On the
one hand, the simplicial volume of a Riemannian manifold encodes non-trivial
information about the Riemannian volume; on the other hand, simplicial volume
can be described in terms of a certain functional analytic version of homological
algebra (bounded cohomology). In this article we survey important properties
and applications of simplicial volume as well as useful techniques for working with
simplicial volume.

53C23, 57R99

1. Definition and history

Simplicial volume is a homotopy invariant of oriented closed connected manifolds
that was introduced by Gromov in his proof of Mostow rigidity [31][13]. Intuitively,
simplicial volume measures how difficult it is to describe the manifold in question
in terms of simplices (with real coefficients):

Definition 1.1. (Simplicial volume) Let M be an oriented closed connected mani-
fold of dimension n. Then the simplicial volume of M (also called the Gromov
norm of M) is defined as

‖M‖ :=
∥∥∥[M ]

∥∥∥
1

= inf
{
|c|1

∣∣∣ c ∈ Cn(M ;R) is a fundamental cycle of M
}
∈ R≥0,

where [M ] ∈ Hn(M ;R) is the fundamental class of M with real coefficients.
• Here, | · |1 denotes the `1-norm on the singular chain complex C∗( · ;R) with
real coefficients induced from the (unordered) basis given by all singular
simplices, i.e.: for a topological space X and a chain c = ∑k

j=0 aj · σj ∈
C∗(X;R) (in reduced form), the `1-norm of c is given by

|c|1 :=
k∑
j=0
|aj|.

• Moreover, ‖ · ‖1 denotes the `1-semi-norm on singular homology H∗( · ;R)
with real coefficients, which is induced by | · |1. More explicitly, if X is a
topological space and α ∈ H∗(X;R), then

‖α‖1 := inf
{
|c|1

∣∣∣ c ∈ C∗(X;R) is a cycle representing α
}
.

Convention 1.2. In the following, if not explicitly stated otherwise, all manifolds
are topological manifolds and are of non-zero dimension.
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2. Functoriality and elementary examples

The `1-semi-norm is functorial in the following sense [14, Section 5.34]:

Proposition 2.1 (Functoriality of the `1-semi-norm). If f : X −→ Y is a continuous
map of topological spaces and α ∈ H∗(X;R), then∥∥∥H∗(f ;R)(α)

∥∥∥
1
≤ ‖α‖1,

as can be seen by inspecting the definition of H∗(f ;R) = H∗(C∗(f ;R)) and of ‖ · ‖1.

Corollary 2.2. • Let f : M −→ N be a map of oriented closed connected
manifolds of the same dimension. Then

| deg f | · ‖N‖ ≤ ‖M‖.
• Because homotopy equivalences of oriented closed connected manifolds have
degree −1 or 1, it follows that simplicial volume indeed is a homotopy in-
variant of oriented closed connected manifolds.

Hence, all oriented closed connected manifolds admitting a self-map of non-trivial
degree (i.e., not equal to −1, 0, or 1) have vanishing simplicial volume; for instance,
the simplicial volume of all

• spheres
• tori
• (odd-dimensional) real projective spaces
• complex projective spaces

is zero. Similarly, any oriented closed connected smooth manifold that admits a
non-trivial smooth S1-action has vanishing simplicial volume [36].

3. ‘Computing’ simplicial volume

In most cases, trying to compute simplicial volume by inspecting the definition
proves to be futile; the two main sources for non-trivial estimates and inheritance
properties of simplicial volume are:

• Geometric approach: The connection between simplicial volume and Rie-
mannian geometry (see Section 3.1 below).
• Algebraic approach: The connection between simplicial volume and bounded
cohomology (see Section 3.2 below).

3.1. Simplicial volume and Riemannian geometry. A fascinating aspect of
simplicial volume is that it is a homotopy invariant encoding non-trivial information
about the Riemannian volume. The most fundamental result of this type is Gromov’s
Main Inequality [13, Section 0.5] and the resulting lower bound of the minimal
volume in terms of the simplicial volume [13, Section 0.5] (the improved upper
bound is due to Besson, Courtois, and Gallot [4, Théorème D]):

Theorem 3.1 (Main Inequality). For all oriented closed connected Riemannian
n-manifolds M whose Ricci curvature is bounded from below by −1/(n− 1) we have

‖M‖ < n! · vol(M).
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Simplicial volume 3

Theorem 3.2 (Simplicial volume and minimal volume). For all oriented closed
connected smooth n-manifolds M we have

‖M‖ ≤ (n− 1)n · n!
nn/2

·minvol(M).

The minimal volume [13] of a complete smooth manifold M is defined as
minvol(M) := inf

{
vol(M, g)

∣∣∣ g is a Riemannian metric on M with | sec(g)| ≤ 1
}
.

Conversely, in the presence of negative curvature, the simplicial volume is bounded
from below by the Riemannian volume [13, Section 0.3][35, Theorem 6.2][16]:
Theorem 3.3 (Simplicial volume and negative sectional curvature).

• The simplicial volume of oriented closed connected Riemannian manifolds of
negative sectional curvature is non-zero. More precisely: For every n ∈ N
there is a constant Cn ∈ R>0 such that the following holds: If M is an
oriented closed connected Riemannian n-manifold whose sectional curvature
is bounded from above by δ ∈ R<0, then

‖M‖ > Cn · |δ|n/2 · vol(M).
• Let M be an oriented closed connected hyperbolic n-manifold. Then ‖M‖ =

vol(M)/vn, where vn is the supremal volume of all geodesic n-simplices in
hyperbolic n-space (indeed, vn is finite [35, Proposition 6.1.4]).

The proof of the lower bound ‖ · ‖ ≥ const · vol( · ) consists of ‘straightening’
fundamental cycles to cycles consisting only of singular simplices whose lifts to the
Riemannian universal covering are geodesic.

It is well known that v2 = π [35, p. 6.3], and hence, for any oriented closed
connected surface Sg of genus g ∈ N≥1 we have ‖Sg‖ = 4 · g − 4.

Generalisations of Theorem 3.3 are:
• The proportionality principle for simplicial volume (Theorem 4.4);
• the non-vanishing of the simplicial volume of oriented closed connected lo-
cally symmetric spaces of non-compact type [19] (which is obtained by a
combination of a generalised straightening and the proportionality princi-
ple);
• non-vanishing results for certain manifolds with negatively curved fundamen-
tal group (see Section 5.3 below);
• the construction of (aspherical) oriented closed connected manifolds of non-
zero simplicial volume via (relative) hyperbolisation techniques [1].

3.2. Simplicial volume and bounded cohomology. A more algebraic approach
to simplicial volume is based on the following observation [13, p. 17][2, F.2.2] (see
below for an explanation of the notation):
Proposition 3.4 (Duality principle). Let X be a topological space, let n ∈ N, and
let α ∈ Hn(X;R). Then

‖α‖1 = sup
{ 1
‖ϕ‖∞

∣∣∣∣ ϕ ∈ Hn(X;R), 〈ϕ, α〉 = 1
}

= sup
{ 1
‖ϕ‖∞

∣∣∣∣ ϕ ∈ Hn
b (X;R), 〈ϕ, α〉 = 1

}
.
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Corollary 3.5. Let M be an oriented closed connected n-manifold. Then

‖M‖ = 1∥∥∥[M ]∗
∥∥∥
∞

= sup
{ 1
‖ϕ‖∞

∣∣∣∣ ϕ ∈ Hn
b (M ;R), cM(ϕ) = [M ]∗

}
where [M ]∗ ∈ Hn(M ;R) denotes the cohomology class dual to the real fundamental
class of M .

For the sake of completeness, we review the definition of bounded cohomology of
topological spaces:

Definition 3.6. (Bounded cohomology) LetX be a topological space, and let n ∈ N.
• If f ∈ Cn(X;R) is a cochain, then we write

|f |∞ := sup
σ∈map(∆n,X)

|f(σ)| ∈ R≥0 ∪ {∞}.

If |f |∞ <∞, then f is a bounded cochain.
• We write Cn

b (X;R) :=
{
f
∣∣∣ f ∈ Cn(X;R), |f |∞ < ∞

}
for the subspace

of bounded cochains. Notice that C∗b (X;R) is a subcomplex of the singular
cochain complex, called the bounded cochain complex of X.
• The cohomology H∗b (X;R) of C∗b (X;R) is the bounded cohomology of X.
(It is not difficult to see that every continuous map induces a homomorphism
on the level of bounded cohomology; turning H∗b (·;R) into a contravariant
functor).
• The norm | · |∞ on the bounded cochain complex induces a semi-norm on
bounded cohomology: If ϕ ∈ Hn

b (X;R), then

‖ϕ‖∞ := inf
{
|f |∞

∣∣∣ f ∈ Cn
b (X;R) is a cocycle representing ϕ

}
.

• The natural inclusion C∗b (X;R) ↪→ C∗(X;R) induces a natural homomor-
phism cX : H∗b (X;R) −→ H∗(X;R), the comparison map.

Bounded cohomology was originally introduced by Trauber. Gromov further de-
veloped bounded cohomology and studied its relation with the (Riemannian) volume
of manifolds [13]. A more algebraic approach to bounded cohomology was subse-
quently developed by Brooks [7], Ivanov [17], Noskov [33], Monod [28][29], and
Bühler [11].

In the context of simplicial volume, bounded cohomology contributed to establish
vanishing results (Section 5.2) in the presence of amenable fundamental groups, non-
vanishing results (Section 5.3) in the presence of certain types of negative curvature,
and inheritance properties with respect to products (Section 4.2), connected sums
(Section 4.3) and shared Riemannian coverings (Section 4.5).

4. Inheritance properties

4.1. Finite Coverings. Simplicial volume is multiplicative with respect to finite
coverings:
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Proposition 4.1 (Simplicial volume and finite coverings). Let p : M −→ N be
a covering map of oriented closed connected manifolds, and let d be the (finite!)
number of sheets of p. Then

‖M‖ = d · ‖N‖.

For the proof notice that d = | deg p| and that ‖M‖ ≥ | deg p|·‖N‖ by functoriality
(Corollary 2.2); to show the converse inequality ‖M‖ ≤ d · ‖N‖ one can use the
transfer on singular chains.

4.2. Products. Simplicial volume is almost multiplicative with respect to direct
products of manifolds [13, p. 10][2, Theorem F.2.5]:

Theorem 4.2 (Simplicial volume and products). Let M and N be oriented closed
connected manifolds. Then

‖M‖ · ‖N‖ ≤ ‖M ×N‖ ≤
(

dim(M) + dim(N)
dim(M)

)
· ‖M‖ · ‖N‖.

A proof of the right hand estimate can be given by looking at the concrete de-
scription of [M × N ] = [M ] × [N ] in terms of the cross-product of singular chains;
a proof of the left hand estimate can be obtained by using the duality principle
(Corollary 3.5) and the fact that the norm ‖ · ‖∞ is submultiplicative with respect
to the cross-product of (bounded) singular cochains.

Notice that simplicial volume in general is not multiplicative: Bucher-Karlsson
[8, Corollary 2] proved that ‖S × S ′‖ = 3/2 · ‖S‖ · ‖S ′‖ holds for all oriented closed
connected surfaces S, S ′ of genus at least 2 (and ‖S‖ 6= 0 6= ‖S ′‖ (see Section 3.1
above)).

4.3. Connected sums. Simplicial volume is additive with respect to connected
sums in the following sense [13, p. 10]:

Theorem 4.3 (Simplicial volume and connected sums). Let M and N be oriented
closed connected manifolds of dimension at least 3. Then

‖M #N‖ = ‖M‖+ ‖N‖.

Notice that simplicial volume in general is not additive with respect to connected
sums in dimension 2: The simplicial volume of the torus is zero (see Section 2
above), but the simplicial volume of an oriented closed connected surface of genus
2 is non-zero (see Section 3.1 above) is non-zero.

The proof of Theorem 4.3 is based on the mapping theorem in bounded coho-
mology (Theorem 5.1) and a careful analysis of so-called tree-like complexes [13,
Section 3.5]. Generalising these arguments, it can be seen that also additivity for
simplicial volume with respect to certain ‘amenable’ gluings holds [18].

4.4. Fibre bundles.
• In low dimensions, there is a relation between the simplicial volume of the
total space of a fibre bundle of oriented closed connected manifolds and the
product of the simplicial volume of base and fibre [15][10].
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• However, in general, the simplicial volume of a fibre bundle of oriented closed
connected manifolds is not related in an obvious way to the simplicial volume
of base and fibre [15]: There exist oriented closed connected hyperbolic 3-
manifolds that fibre over the circle. However, the circle has simplicial volume
equal to zero, while the simplicial volume of the hyperbolic 3-manifold in
question is non-zero (Theorem 3.3).
• In certain cases, amenable fibres force the simplicial volume to vanish (see
Section 5.2 below).

4.5. Proportionality principle. For hyperbolic manifolds the simplicial volume
is proportional to the Riemannian volume. Gromov and Thurston generalised this
result suitably to cover all Riemannian manifolds:

Theorem 4.4 (Proportionality principle). Let M and N be oriented closed con-
nected Riemannian manifolds that have isometric Riemannian universal coverings.
Then

‖M‖
vol(M) = ‖N‖

vol(N) .

Both Gromov’s and Thurston’s proof of this result make use of an averaging
process. More precisely:

• Gromov’s strategy: Use the duality principle (Corollary 3.5) and average
(bounded) continuous singular cochains over the isometry group of the Rie-
mannian universal covering modulo the fundamental group; this requires a
careful analysis of the relation between (bounded) continuous singular coho-
mology and (bounded) singular cohomology [13, Section 2.3][9][12].
• Thurston’s strategy: Replace singular homology by measure homology, and
average/smear measure chains over the isometry group of the Riemannian
universal covering; this requires a careful analysis of the relation between
measure homology and singular homology [35, p. 6.9][22][23].

5. Simplicial volume and the fundamental group

In view of the duality principle (Corollary 3.5) we can interpret simplicial volume
in terms of bounded cohomology. The key to deducing interesting consequences for
simplicial volume from bounded cohomology is the relation of bounded cohomology
to the fundamental group via the mapping theorem (Theorem 5.1), and the relation
of bounded cohomology to geometric group theory (see Section 5.3 below).

5.1. Background: Mapping theorem in bounded cohomology. One of the
most fundamental (and most surprising) features of bounded cohomology is that
it cannot detect amenable groups in the homotopy groups of a space [13, Section
3.1][17]:

Theorem 5.1 (Mapping theorem in bounded cohomology). Let f : X −→ Y be a
(base-point preserving) continuous map between connected countable CW-complexes
such that π1(f) : π1(X) −→ π1(Y ) is surjective and has amenable kernel.

• Then the induced map H∗b (f ;R) : H∗b (Y ;R) −→ H∗b (X;R) in bounded coho-
mology is an isometric isomorphism.
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• In particular, the map H∗(f ;R) : H∗(X;R) −→ H∗(Y ;R) is isometric with
respect to the `1-semi-norm ‖ · ‖1. (In general, this does not say anything
about injectivity/surjectivity of H∗(f ;R)).

Notice however that simplicial volume does not depend only on the fundamental
group, but rather on the classifying map to Bπ1(·); for instance, any oriented closed
connected hyperbolic manifold M satisfies

‖M‖ 6= 0 = 0 · ‖M‖ = ‖S2 ×M‖ and π1(M) ∼= π1(S2 ×M).

More generally, if M is an oriented closed connected n-manifold whose fundamental
group has (rational) cohomological dimension less than n, then ‖M‖ = 0.

5.2. Amenability and vanishing results. Direct consequences of the mapping
theorem for bounded cohomology (Theorem 5.1) are:

• The simplicial volume of oriented closed connected manifolds with amenable
fundamental group is zero;
• this includes, in particular, the case of trivial, Abelian, solvable, and nilpo-
tent fundamental groups.
• Let M be an oriented closed connected manifold that is the total space of
a fibration whose base and fibre are oriented closed connected manifolds (of
non-zero dimension), and where the fibre has amenable fundamental group.
Then ‖M‖ = 0 [25, Exercise 14.15 and p. 556].

More generally: A stronger vanishing result for the comparison map H∗b ( · ;R) −→
H∗( · ;R) for spaces with amenable coverings of small multiplicity, [13, Vanishing
Finiteness Theorem on p. 58][17, Corollary 6.3], leads to the following statement: If
M is an oriented closed connected n-manifold that admits a covering by amenable
open subsets of multiplicity at most n, then ‖M‖ = 0.

5.3. Hyperbolicity and non-vanishing results. The non-vanishing of the sim-
plicial volume of Riemannian manifolds with negative sectional curvature (Theorem
3.3) together with the duality principle implies that the cohomological fundamen-
tal class of such a manifold lies in the image of the comparison map H∗b ( · ;R) −→
H∗( · ;R). More generally, Mineyev showed that (in the case of rationally essen-
tial manifolds) the condition of negative sectional curvature can be relaxed to word
hyperbolicity of the fundamental group [26][27]:

Theorem 5.2 (Bounded cohomology and word hyperbolic groups). Let G be a
finitely presented group. Then the following are equivalent:

• The group G is word hyperbolic.
• The comparison map H∗b (BG;V ) −→ H∗(BG;V ) is surjective for all k ∈
N≥2 and all Banach G-modules V .

Corollary 5.3 (Simplicial volume and word hyperbolic fundamental groups). Let
M be an oriented closed connected manifold of dimension at least 2 that is rationally
essential (e.g., aspherical). If the fundamental group of M is word hyperbolic, then
‖M‖ > 0.
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6. Variations of simplicial volume

For simplicity, in the previous sections we only considered the case that all man-
ifolds in question were orientable and closed (and connected). In the following, we
briefly list possible extensions of the definition of simplicial volume to larger classes
of manifolds.

6.1. Simplicial volume of manifolds with boundary. For oriented connected
compact n-manifolds (M,∂M) with boundary, the relative simplicial volume
‖M,∂M‖ is defined as the `1-semi-norm on relative singular homologyHn(M,∂M ;R)
of the relative fundamental class [M,∂M ] ∈ Hn(M,∂M ;R) [13][18]; the extension of
simplicial volume to manifolds with boundary plays an important role in the theory
of 3-manifolds (see Section 7 below).

6.2. Simplicial volume of non-compact manifolds. Non-compact, oriented,
connected manifolds have a fundamental class in locally finite homology; notice
that there is a (possibly infinite) `1-semi-norm on locally finite homology with real
coefficients. There are two main flavours of simplicial volumes of non-compact mani-
folds – a topological one and a geometric one (where a Lipschitz condition is imposed
on the fundamental cycles):
(1) Topological version [13]: Let M be an oriented connected n-manifold without
boundary, and let [M ] ∈ H lf

n(M ;R) be its locally finite fundamental class (with real
coefficients). Then the simplicial volume ‖M‖ ofM is defined as the `1-semi-norm
of [M ].

• For all proper continuous maps f : M → N between oriented connected
manifolds without boundary of the same dimension we have the inequality
| deg f | · ‖N‖ ≤ ‖M‖.
• Notice that the simplicial volume of non-compact manifolds can be infinite;
e.g., ‖R‖ = ∞. In particular, if (W,∂W ) is an oriented compact connected
manifold with boundary, then in general the simplicial volume of the interior
W ◦ and the relative simplicial volume of (W,∂W ) (which is always finite)
do not coincide; the finiteness of ‖W ◦‖ can be characterised in terms of
`1-homology [24].
• However, the simplicial volume of non-compact manifolds vanishes for many
interesting manifolds [13, p. 58f][20], and it does not behave well with respect
to taking products: for instance, ‖R‖ =∞, but ‖R× R‖ = 0 [13, p. 8f][24].

(2) Geometric version [13, Section 4.4f][20]: Let M be an oriented connected Rie-
mannian n-manifold. Then the Lipschitz simplicial volume of M is defined by

‖M‖Lip := inf
{
|c|1

∣∣∣ c ∈ C lf
n(M ;R) is a fundamental cycle of M

with Lip(c) <∞
}
∈ [0,∞],

where Lip(c) is the supremum of the Lipschitz constants of all singular simplices
occurring in c.
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• Lipschitz simplicial volume is functorial with respect to proper Lipschitz
maps between Riemannian manifolds of the same dimension (so, one ap-
plication of the Lipschitz simplicial volume are degree theorems for proper
Lipschitz maps between non-compact manifolds [20]).
• The Lipschitz simplicial volume is (up to a dimension constant) a lower
bound for the minimal volume [13].
• The Lipschitz simplicial volume of locally symmetric spaces of finite volume
and non-compact type is non-zero [20].
• The Lipschitz simplicial volume of Hilbert modular varieties coincides with
the simplicial volume [21].
• The Lipschitz simplicial volume behaves better than the topologically de-
fined simplicial volume with respect to taking products [20], and there is a
version of the proportionality principle for the Lipschitz simplicial volume
[13, p. 80][20]

6.3. Simplicial volume of non-orientable manifolds. The simplicial volume of
a connected non-orientable manifold M is defined as 1/2 · ‖M‖, where M is the
orientation double covering of M ; in view of the multiplicativity of the simplicial
volume (of oriented manifolds) with respect to finite coverings, this definition is
reasonable.

7. Applications

Typically, simplicial volume is used as a tool to establish topological rigidity
properties of the Riemannian volume or non-vanishing of the minimal volume of
certain manifolds. Two prominent examples are Gromov’s proof of Mostow rigidity
and degree theorems.

7.1. Mostow rigidity. Hyperbolic manifolds are completely determined by their
homotopy type, i.e., hyperbolic manifolds are rigid in the following sense [30]:

Theorem 7.1 (Mostow rigidity). Let M and N be oriented closed connected hy-
perbolic manifolds of the same dimension ≥ 3. If f : M −→ N is a homotopy
equivalence, then there is an isometry M −→ N homotopic to f . In particular, any
oriented closed connected smooth manifold of dimension at least 3 can admit at most
one hyperbolic structure.

One decisive step in Gromov’s proof [31][2, Chapter C][34, Chapter 11] of Mostow
rigidity is to show that if two oriented closed connected hyperbolic manifolds are
homotopy equivalent, they have to have the same volume; Gromov introduced sim-
plicial volume in this context as it provides an elegant way of establishing this fact
(using the relation to the hyperbolic volume (Theorem 3.3) and the functoriality of
the simplicial volume (Corollary 2.2)).

7.2. Degree theorems. A degree theorem is a theorem of the following form:

Metatheorem 7.2. (Degree theorem) Let D and T be certain suitable classes of
Riemannian manifolds of the same dimension – the domain manifolds and the target
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manifolds. Then there is a constant c ∈ R>0 with the following property: For all
M ∈ D, all N ∈ T and all continuous maps f : M −→ N we have

| deg f | ≤ c · vol(M)
vol(N) .

The art is to find suitable classes of domain and target manifolds. The functorial-
ity of simplicial volume (Corollary 2.2) and the relationship between the Riemann-
ian volume of closed hyperbolic manifolds and the simplicial volume (Theorem 3.3)
combine to give a degree theorem for hyperbolic manifolds:

Theorem 7.3 (Degree theorem for hyperbolic manifolds). Let M and N be oriented
closed connected hyperbolic manifolds of the same dimension. Then

| deg f | ≤ vol(M)
vol(N)

holds for any continuous map f : M −→ N .

In a similar way, non-vanishing results for simplicial volume together with Gro-
mov’s estimate of the minimal volume in terms of the simplicial volume give rise
to more general degree theorems [13, Section 0.5][19], and parallel results for the
Lipschitz simplicial volume of non-compact Riemannian manifolds lead to degree
theorems for proper Lipschitz maps between certain non-compact manifolds [20].

7.3. Dehn fillings and Riemannian volume. Using the relation between the
simplicial volume of hyperbolic manifolds and the hyperbolic volume (a generalised
version that also covers non-compact manifolds and manifolds with boundary),
Thurston proved that hyperbolic Dehn fillings of complete hyperbolic 3-manifolds
of finite volume decrease the Riemannian volume [35, Theorem 6.5.6].

7.4. Recognising graph manifolds. Simplicial volume recognises graph mani-
folds:

• The gluing formula for gluings along tori [13][18], the fact that the simplicial
volume of hyperbolic manifolds is proportional to the Riemannian volume,
and the fact that the simplicial volume of Seifert 3-manifolds is zero show
that the simplicial volume of a 3-manifold (possibly with boundary) that
has a geometric decomposition is proportional to the sum of the volumes
of the hyperbolic pieces in such a decomposition. Therefore, a 3-manifold
that has a geometric decomposition is a graph manifold if and only if it has
zero simplicial volume. (Together with Perelman’s proof of geometrisation
for 3-manifolds this means that a 3-manifold is a graph manifold if and only
if it has zero simplicial volume.)
• In a similar spirit, one can show the following: LetM be a Haken 3-manifold
whose boundary is a union of tori such that any manifold obtained from M
by Dehn fillings has simplicial volume equal to zero. Then M is a graph
manifold [5, Proposition 10.17][6, Proposition 9.36]. This result is used in an
alternative proof [3] of the last step in Perelman’s proof of the Geometrisation
Conjecture for aspherical 3-manifolds.
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7.5. A conjecture on the simplicial volume of knot complements. H. Mu-
rakami and J. Murakami conjectured, similar to the volume conjecture for knots,
that the simplicial volume of a knot complement should be related to the asymptotic
growth rate of the coloured Jones polynomials of the knot in question [32, Conjec-
ture 5.1]; if this conjecture holds, then the (finite type) Vassiliev invariants are able
to detect triviality of a knot [32].
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